In recent years, to reduce cars costs, research has been conducted on dual-phase steels with low manganese content (below 1.0%). This study investigated the influence of technological parameters of heat treatment (heating temperature and cooling medium) on such steels’ structures and mechanical properties. The ferrite-martensitic structures, specific for dual-phase steels, were obtained by intercritical quenching: heating of samples (made of alloys with 0.511% Mn, respectively 0.529% Mn) to temperatures located between critical points Ac1 and Ac3, followed by cooling in water without mechanical agitation and in water activated with ultrasounds at the frequency of 59 kHz. Through metallographic analyses and tensile tests, it was possible to determine the volume fraction of martensite, the ferrite microhardness, the ultimate tensile strength, the total elongation, and with the obtained data, their variations with the heating temperature and the cooling medium were established. Raising the heating temperature (between 760 °C and 820 °C) and using ultrasounds at cooling increased the volume fraction of martensite and the ferrite microhardness. This fact has increased the mechanical strength and reduced the deformability of the studied dual-phase steels. Intercritical quenching in water activated with ultrasounds provided values of structural characteristics and mechanical properties very close to those obtained by quenching in water without mechanical agitation, but was accomplished using a higher-temperature heating. The results obtained were compared with those determined in previous research, performed on dual-phase steel with 1.90% Mn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.