We describe the physical hypothesis in which an approximate model of water
waves is obtained. For an irrotational unidirectional shallow water flow, we
derive the Camassa-Holm equation by a variational approach in the Lagrangian
formalism.Comment: 10 page
This paper is a survey of the short-wavelength stability method for rotating flows. Additional complications such as stratification in the flow or the presence of non-conservative body forces are considered too. This method is applied to the specific study of some exact geophysical flows. For Gerstner-like geophysical flows one can identify perturbations in certain directions as a source of instabilities with an exponentially growing amplitude, the growth rate of the instabilities depending on the steepness of the travelling wave profile. On the other hand, for certain physically realistic velocity profiles, steady flows moving only in the azimuthal direction, with no variation in this direction, are locally stable to the short-wavelength perturbations.This article is part of the theme issue 'Nonlinear water waves'.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.