Recent characterization of abnormal phosphatidylcholine metabolism in tumor cells by nuclear magnetic resonance (NMR) has identified novel fingerprints of tumor progression that are potentially useful as clinical diagnostic indicators. In the present study, we analyzed the concentrations of phosphatidylcholine metabolites, activities of phosphocholineproducing enzymes, and uptake of [methyl-14 C]choline in human epithelial ovarian carcinoma cell lines (EOC) compared with normal or immortalized ovary epithelial cells (EONT). Quantification of phosphatidylcholine metabolites contributing to the 1 H NMR total choline resonance (3.20-3.24 ppm) revealed intracellular [phosphocholine] and [total choline] of 2.3 F 0.9 and 5.2 F 2.4 nmol/10 6 cells, respectively, with a glycerophosphocholine/phosphocholine ratio of 0.95 F 0.93 in EONT cells; average [phosphocholine] was 3-to 8-fold higher in EOC cells (P < 0.0001), becoming the predominant phosphatidylcholine metabolite, whereas average glycerophosphocholine/phosphocholine values decreased significantly to V0.2. Two-dimensional {phosphocholine/total choline, [total choline]} and {glycerophosphocholine/total choline, [total choline]} maps allowed separate clustering of EOC from EONT cells (P < 0.0001, 95% confidence limits). Rates of choline kinase activity in EOC cells were 12-to 24-fold higher (P < 0.03) than those in EONT cells (basal rate, 0.5 F 0.1 nmol/10 6 cells/h), accounting for a consistently elevated (5-to 15-fold) [methyl-14 C]-choline uptake after 1-hour incubation (P < 0.0001). The overall activity of phosphatidylcholine-specific phospholipase C and phospholipase D was also higher (f5-fold) in EOC cells, suggesting that both biosynthetic and catabolic pathways of the phosphatidylcholine cycle likely contribute to phosphocholine accumulation. Evidence of abnormal phosphatidylcholine metabolism might have implications in EOC biology and might provide an avenue to the development of noninvasive clinical tools for EOC diagnosis and treatment follow-up. (Cancer Res 2005; 65(20): 9369-76)
Altered phosphatidylcholine (PC) metabolism in epithelial ovarian cancer (EOC) could provide cholinebased imaging approaches as powerful tools to improve diagnosis and identify new therapeutic targets. The increase in the major choline-containing metabolite phosphocholine (PCho) in EOC compared with normal and nontumoral immortalized counterparts (EONT) may derive from (a) enhanced choline transport and choline kinase (ChoK)-mediated phosphorylation, (b) increased PC-specific phospholipase C (PC-plc) activity, and (c) increased intracellular choline production by PC deacylation plus glycerophosphocholine-phosphodiesterase (GPC-pd) or by phospholipase D (pld)-mediated PC catabolism followed by choline phosphorylation. Biochemical, protein, and mRNA expression analyses showed that the most relevant changes in EOC cells were (a) 12-fold to 25-fold ChoK activation, consistent with higher protein content and increased ChoKα (but not ChoKβ) mRNA expression levels; and (b) 5-fold to 17-fold PC-plc activation, consistent with higher, previously reported, protein expression. PC-plc inhibition by tricyclodecan-9-yl-potassium xanthate (D609) in OVCAR3 and SKOV3 cancer cells induced a 30% to 40% reduction of PCho content and blocked cell proliferation. More limited and variable sources of PCho could derive, in some EOC cells, from 2-fold to 4-fold activation of pld or GPC-pd. Phospholipase A 2 activity and isoform expression levels were lower or unchanged in EOC compared with EONT cells. Increased ChoKα mRNA, as well as ChoK and PC-plc protein expression, were also detected in surgical specimens isolated from patients with EOC. Overall, we showed that the elevated PCho pool detected in EOC cells primarily resulted from upregulation/activation of ChoK and PC-plc involved in PC byosinthesis and degradation, respectively. Cancer Res; 70(5); 2126-35. ©2010 AACR.
Three new monoclonal antibodies (MAbs) (MOv16, MOv18 and MOv19) were raised against human ovarian carcinoma. To obtain more specific reagents than those produced so far, we adopted the following experimental approach which consisted of: the selection of a poorly differentiated ovarian carcinoma which was unreactive with all the MAb previously selected in our laboratory; and the application of a particular immunization protocol. The reactivity of the selected MAbs was studied by solid-phase RIA on live and fixed cells from tumor cell lines and by immunofluorescence on frozen sections from surgical specimens. The MAb MOv16 reacted with 60% of ovarian carcinomas as well as with a high percentage of other carcinomas and with some normal tissues. In contrast, MOv18 and MOv19 appeared to have restricted specificities for ovarian carcinomas and cystadenomas. Reactivity on other carcinomas was only observed in a few cases and no reactivity was found on non-epithelial tumors or normal tissues. Immunoprecipitation experiments indicated that MOv16 recognizes a 48-50-kDA protein, whereas MOv18 and MOv19 both identify a 38-40 kDA glycoprotein band. Cross-competition experiments, together with a double-determinant immunoradiometric assay which uses MOv18 as catcher and MOv19 as tracer, suggested that they recognize different epitopes carried by the same molecule. The affinity constants of MOv18 and MOv19 were estimated to be in the range of 10(8)-10(9) M-1. Taken together, the properties of these antibodies, their restricted ovarian tumor specificities and relative high affinity constants, suggest that they could represent promising tools for in vivo applications.
Previous findings indicated that the activated leukocyte cell adhesion molecule (ALCAM) is expressed by tumors and plays a role in tumor biology. In this study, we show that ALCAM is shed from epithelial ovarian cancer (EOC) cells in vitro, leading to the generation of a soluble ALCAM (sALCAM), consisting of most of the extracellular domain. A similar sALCAM molecule was also found in the ascitic fluids and sera from EOC patients, suggesting that this process also occurs in vivo. sALCAM is constitutively produced by EOC cells, and this process can be enhanced by cell treatment with pervanadate, phorbol 12-myristate 13-acetate (PMA), or epidermal growth factor (EGF), a known growth factor for EOC. Pharmacologic inhibitors of matrix metalloproteinases (MMP) and of a disintegrin and metalloproteases (ADAM), and the tissue inhibitor of metalloproteinase-3, significantly inhibited sALCAM release by EOC cells. The ADAM17/TACE molecule was expressed in EOC cell lines and ADAM17/TACE silencing by specific small interfering RNA-reduced ALCAM shedding. In addition, inhibitors of ADAM function blocked EOC cell motility in a wound-healing assay. Conversely, a recombinant antibody blocking ALCAM adhesive functions and inducing ALCAM internalization enhanced EOC cell motility. Altogether, our data suggest that the disruption of ALCAM-mediated adhesion is a relevant step in EOC motility, and ADAM17/TACE takes part in this process, which may be relevant to EOC invasive potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.