To achieve effective facial expression recognition (FER), it is of great importance to address various disturbing factors, including pose, illumination, identity, and so on. However, a number of FER databases merely provide the labels of facial expression, identity, and pose, but lack the label information for other disturbing factors. As a result, many methods are only able to cope with one or two disturbing factors, ignoring the heavy entanglement between facial expression and multiple disturbing factors. In this paper, we propose a novel Deep Disturbance-disentangled Learning (DDL) method for FER. DDL is capable of simultaneously and explicitly disentangling multiple disturbing factors by taking advantage of multi-task learning and adversarial transfer learning. The training of DDL involves two stages. First, a Disturbance Feature Extraction Model (DFEM) is pre-trained to perform multi-task learning for classifying multiple disturbing factors on the large-scale face database (which has the label information for various disturbing factors). Second, a Disturbance-Disentangled Model (DDM), which contains a global shared sub-network and two task-specific (i.e., expression and disturbance) sub-networks, is learned to encode the disturbance-disentangled information for expression recognition. The expression sub-network adopts a multi-level attention mechanism to extract expression-specific features, while the disturbance sub-network leverages adversarial transfer learning to extract disturbance-specific features based on the pre-trained DFEM. Experimental results on both the in-the-lab FER databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild FER databases
In this paper, we propose a novel adaptive deep disturbance-disentangled learning (ADDL) method for effective facial expression recognition (FER). ADDL involves a two-stage learning procedure. First, a disturbance feature extraction model (DFEM) is trained to identify multiple disturbing factors on a large-scale face database involving disturbance label information. Second, an adaptive disturbance-disentangled model (ADDM), which contains a global shared subnetwork and two task-specific subnetworks, is designed and learned to explicitly disentangle disturbing factors from facial expression images. In particular, the expression subnetwork leverages a multi-level attention mechanism to extract expression-specific features, while the disturbance subnetwork embraces a new adaptive
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-thelab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.