Correct pathfinding and target recognition of a developing axon are exquisitely regulated processes that require multiple guidance factors. Among these factors, the second messengers, cAMP and cGMP, are known to be involved in establishing the guidance cues for axon growth through different intracellular signaling pathways. However, whether and how cGMP-dependent protein kinase (PKG) regulates axon guidance remains poorly understood. Here, we show that the motor axons of intersegmental nerve b (ISNb) in the Drosophila embryo display targeting defects during axon development in the absence of foraging ( for), a gene encoding PKG. In vivo tag expression revealed PKG to be present in the ventral nerve code at late embryonic stages, supporting its function in embryonic axon guidance. Mechanistic studies showed that the transcription factor longitudinal lacking (lola) genetically interacts with for. PKG physically associates with the LolaT isoform via the C-terminal zinc-finger-containing domain. Overexpression of PKG leads to the cytoplasmic retention of LolaT in S2 cells, suggesting a role for PKG in mediating the nucleocytoplasmic trafficking of Lola. Together, these findings reveal a novel function of PKG in regulating the establishment of neuronal connectivity by sequestering Lola in the cytoplasm.
Orientation, the spatial organization of animal behavior, is an essential faculty of animals. Bacteria and lower animals such as insects exhibit taxis, innate orientation behavior, directly toward or away from a directional cue. Organisms can also orient themselves at a specific angle relative to the cues. In this study, using Drosophila as a model system, we established a visual orientation conditioning paradigm based on a flight simulator in which a stationary flying fly could control the rotation of a visual object. By coupling aversive heat shocks to a fly's orientation toward one side of the visual object, we found that the fly could be conditioned to orientate toward the left or right side of the frontal visual object and retain this conditioned visual orientation. The lower and upper visual fields have different roles in conditioned visual orientation. Transfer experiments showed that conditioned visual orientation could generalize between visual targets of different sizes, compactness, or vertical positions, but not of contour orientation. Rut—Type I adenylyl cyclase and Dnc—phosphodiesterase were dispensable for visual orientation conditioning. Normal activity and scb signaling in R3/R4d neurons of the ellipsoid body were required for visual orientation conditioning. Our studies established a visual orientation conditioning paradigm and examined the behavioral properties and neural circuitry of visual orientation, an important component of the insect's spatial navigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.