Cold stress limits plant geographical distribution and influences plant growth, development, and yields. Plants as sessile organisms have evolved complex biochemical and physiological mechanisms to adapt to cold stress. These mechanisms are regulated by a series of transcription factors and proteins for efficient cold stress acclimation. It has been established that the ICE-CBF-COR signaling pathway in plants regulates how plants acclimatize to cold stress. Cold stress is perceived by receptor proteins, triggering signal transduction, and Inducer of CBF Expression (ICE) genes are activated and regulated, consequently upregulating the transcription and expression of the C-repeat Binding Factor (CBF) genes. The CBF protein binds to the C-repeat/Dehydration Responsive Element (CRT/DRE), a homeopathic element of the Cold Regulated genes (COR gene) promoter, activating their transcription. Transcriptional regulations and post-translational modifications regulate and modify these entities at different response levels by altering their expression or activities in the signaling cascade. These activities then lead to efficient cold stress tolerance. This paper contains a concise summary of the ICE-CBF-COR pathway elucidating on the cross interconnections with other repressors, inhibitors, and activators to induce cold stress acclimation in plants.
The TEOSINTE BRANCHED1 (TBI1), CYCLOIDEA (CYC), and PROLIFERATING CELL NUCLEAR ANTIGEN FACTORS (PCF1 and PCF2) proteins truncated as TCP transcription factors carry conserved basic-helix-loop-helix (bHLH) structure, related to DNA binding functions. Evolutionary history of the TCP genes has shown their presence in early land plants. In this paper, we performed a comparative discussion on the current knowledge of the TCP Transcription Factors in lower and higher plants: their evolutionary history based on the phylogenetics of 849 TCP proteins from 37 plant species, duplication events, and biochemical roles in some of the plants species. Phylogenetics investigations confirmed the classification of TCP TFs into Class I (the PCF1/2), and Class II (the C- clade) factors; the Class II factors were further divided into the CIN- and CYC/TB1- subclade. A trace in the evolution of the TCP Factors revealed an absence of the CYC/TB1subclade in lower plants, and an independent evolution of the CYC/TB1subclade in both eudicot and monocot species. 54% of the total duplication events analyzed were biased towards the dispersed duplication, and we concluded that dispersed duplication events contributed to the expansion of the TCP gene family. Analysis in the TCP factors functional roles confirmed their involvement in various biochemical processes which mainly included promoting cell proliferation in leaves in Class I TCPs, and cell division during plant development in Class II TCP Factors. Apart from growth and development, the TCP Factors were also shown to regulate hormonal and stress response pathways. Although this paper does not exhaust the present knowledge of the TCP Transcription Factors, it provides a base for further exploration of the gene family.
As a magnoliid angiosperm, the Liriodendron chinense (Hamsl) Sarg in the Magnoliaceae family is susceptible to external environmental factors. The TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL FACTORS (TCP) proteins known for their growth and developmental biological roles have been identified in various plant species but not in the Liriodendron chinense. In this study, 15 TCP genes were identified in the L. chinense genome, and categorized into two classes, termed class I (PCF) and class II (CIN and CYC/TB1). A total of 14 TCP genes were located on the 10 chromosomes, and the remaining one, on a contig. Multispecies phylogenetic tree analysis supported the classification of identified LcTCP genes and exhibited that the expansion of the LcTCP gene family was before the angiosperm evolutionary divergence times. Additional gene duplication investigations revealed a purifying selection pressure during evolution history. Moreover, the LcTCP genes were also observed to have various cis-acting elements related to plant growth and development, phytohormone regulations, and abiotic stress responses. Gene expression pattern analysis also paraded that LcTCP genes play a crucial role in abiotic stress regulations. In particular, LcTCP1 in all stresses investigated. Overall, our findings suggest a pivotal role for the TCP gene family during external environmental stresses in L. chinense. This study will provide valuable information on the identification and function of the LcTCPs during abiotic stresses, paving the way for further research on the functional verification of L. chinense TCPs.
bHLH transcription factors play an animated role in the plant kingdom during growth and development, and responses to various abiotic stress. In this current study, we conducted, the genome-wide survey of bHLH transcription factors in Liriodendron chinense (Hemsl) Sarg., 91 LcbHLH family members were identified. Identified LcbHLH gene family members were grouped into 19 different subfamilies based on the conserved motifs and phylogenetic analysis. Our results showed that LcbHLH genes clustered in the same subfamily exhibited a similar conservative exon-intron pattern. Hydrophilicity value analysis showed that all LcbHLH proteins were hydrophilic. The Molecular weight (Mw) of LcbHLH proteins ranged from 10.19 kD (LcbHLH15) to 88.40 kD (LcbHLH50). A greater proportion, ~63%, of LcbHLH proteins had a theoretical isoelectric point (pI) less than seven. Additional analysis on the collinear relationships within species and among dissimilar species illustrated that tandem and fragment duplication are the foremost factors of amplification of this family in the evolution process, and they are all purified and selected. RNA-seq and real-time quantitative PCR analysis of LcbHLH members showed that the expression of LcbHLH35, 55, and 86 are up-regulated, and the expression of LcbHLH9, 20, 39, 54, 56, and 69 is down-regulated during cold stress treatments while the expression of LcbHLH24 was up-regulated in the short term and then later down-regulated. From our results, we concluded that LcbHLH genes might participate in cold-responsive processes of L. chinense. These findings provide the basic information of bHLH gene in L. chinense and their regulatory roles in plant development and cold stress response.
Climate change has a significant impact on species population size and distribution, global biodiversity, and ecological status. The Liriodendron genus contains two species: Liriodendron chinense and Liriodendron tulipifera, both playing important roles in timber, medicinal, and landscape purposes. However, little is known about their population distribution characteristics and important climatic factors shaping their suitability. In this research, we used the geological record data, 19 climate components, MaxEnt, and ArcGIS to recreate and analyze the potential population distribution and their alterations of Liriodendron within the world beneath the current and future scenarios of RCP 2.6, RCP 4.5, and RCP 8.5 in 2050 and 2070. Our results showed that: Liriodendron is suitable to grow in subtropical monsoon climate areas, and that the climatic factor of precipitation of warmest quarter exerts the greatest impact on L. chinense, with a contribution rate of 57.6%. Additionally, we showed that the climatic factor of precipitation of the driest month exerts the greatest impact on L. tulipifera, with a contribution rate of 60.5%. Further analysis exhibited that low temperature and temperature fluctuations are major temperature factors affecting L. chinense and L. tulipifera, respectively. Therefore, we predicted that by the 2050s and 2070s, the areas of Liriodendron suitable habitats would increase first and then decrease in three scenarios; except the area of L. tulipifera suitable habitats under RCP8.5, which shows a slight increase. We then conclude that the Liriodendron suitable areas would shift to high latitudes due to global climate warming. The information gained from this study will provide a reference for developing forest cultivation, management, and conservation strategies for these two important tree species, and also a basis for subsequent biogeographic research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.