Nanozymes are nanomaterials exhibiting intrinsic enzyme-like characteristics that have increasingly attracted attention, owing to their high catalytic activity, low cost and high stability. This combination of properties has enabled a broad spectrum of applications, ranging from biological detection assays to disease diagnosis and biomedicine development. Since the intrinsic peroxidase activity of FeO nanoparticles (NPs) was first reported in 2007, >40 types of nanozymes have been reported that possess peroxidase-, oxidase-, haloperoxidase- or superoxide dismutase-like catalytic activities. Given the complex interdependence of the physicochemical properties and catalytic characteristics of nanozymes, it is important to establish a standard by which the catalytic activities and kinetics of various nanozymes can be quantitatively compared and that will benefit the development of nanozyme-based detection and diagnostic technologies. Here, we first present a protocol for measuring and defining the catalytic activity units and kinetics for peroxidase nanozymes, the most widely used type of nanozyme. In addition, we describe the detailed experimental procedures for a typical nanozyme strip-based biological detection test and demonstrate that nanozyme-based detection is repeatable and reliable when guided by the presented nanozyme catalytic standard. The catalytic activity and kinetics assays for a nanozyme can be performed within 4 h.
An ideal nanocarrier for efficient drug delivery must be able to target specific cells and carry high doses of therapeutic drugs and should also exhibit optimized physicochemical properties and biocompatibility. However, it is a tremendous challenge to engineer all of the above characteristics into a single carrier particle. Here, we show that natural H-ferritin (HFn) nanocages can carry high doses of doxorubicin (Dox) for tumor-specific targeting and killing without any targeting ligand functionalization or property modulation. Doxloaded HFn (HFn-Dox) specifically bound and subsequently internalized into tumor cells via interaction with overexpressed transferrin receptor 1 and released Dox in the lysosomes. In vivo in the mouse, HFn-Dox exhibited more than 10-fold higher intratumoral drug concentration than free Dox and significantly inhibited tumor growth after a single-dose injection. Importantly, HFn-Dox displayed an excellent safety profile that significantly reduced healthy organ drug exposure and improved the maximum tolerated dose by fourfold compared with free Dox. Moreover, because the HFn nanocarrier has well-defined morphology and does not need any ligand modification or property modulation it can be easily produced with high purity and yield, which are requirements for drugs used in clinical trials. Thus, these unique properties make the HFn nanocage an ideal vehicle for efficient anticancer drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.