The lack of supported versions of the tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) ligand, suitable for flow-chemistry applications at scale, prompted us to develop a new route for the immobilization of such tris-triazole chelating units on highly cross-linked polystyrene resins. With this aim, the preparation of the known TBTA-type monomer 3 was optimized to develop a high-yield synthetic sequence, devoid of chromatographic purifications at any stage. Then, bead-type (P7) and monolithic (M7) functional resins were obtained by the easy and scalable suspension- or mold-copolymerization of 3 with divinylbenzene. Both types of materials were found to possess a highly porous morphology and specific surface area in the dry state and could be charged with substantial amounts of Cu(I) or Cu(II) salts. After treatment of the latter with a proper reducing agent, the corresponding supported Cu(I) complexes were tested in the copper-catalyzed alkyne-azide cycloaddition reaction (CuAAC). The immobilized catalysts proved active at room temperature and, in batch and with catalyst loadings as low as 0.6 mol%, afforded quantitative conversions within 20 h. Independent of the alkyne structure, extended use of the supported catalyst in flow was also possible. In the reaction of benzylazide and propargyl alcohol, this allowed a total turnover number larger than 400 to be reached.
<div>Measurement of pH is of fundamental importance in a wide range of environmental, biological and industrial applications. Glass electrode and litmus paper are widely used for this, but the former is difficult to miniaturize, prone to drift and fragile, the latter is inaccurate. This paper describes a pH sensor based on an indoaniline-derivative (4-((4-aminophenyl)imino)-2,6-dimethoxycyclohexa-2,5dien-1-one), which exploits alternating current voltammetry to measure pH in the range between 2 and 12 . The synthetized indoaniline-derivative was not genotoxic (A. cepa assay), and the sensor reliably measured pH in milk, tea, orange juice, blood, urine and saliva. Results were comparable with those obtained with a glass electrode calibrated with certified solutions (maximum relative standard deviation of 3 % and accuracy less than 0.2 pH unit). The sensor had negligible hysteresis, an almost Nernstian sensitivity (56 mV/pH) and was fully functional after a two-month storage. Sensor response showed a limited dependence on temperature (0.14 mV per pH unit and °C) and limited sensitivity to possible interferents such as lithium and sodium ions; its response to these was similar to that of a glass electrode, and was absent for ascorbic acid. </div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.