Basic oxygen steel making is a complex chemical and physical industrial process that reduces a mix of pig iron and recycled scrap into low-carbon steel. Good understanding of the process and the ability to predict how it will evolve requires long operator experience, but this can be augmented with process target prediction systems. Such systems may use machine learning to learn a model of the process based on a long process history, and have an advantage in that they can make use of vastly more process parameters than operators can comprehend. While it has become less of a challenge to build such prediction systems using machine learning algorithms, actual production implementations are rare. The hidden reasoning of complex prediction model and lack of transparency prevents operator trust, even for models that show high accuracy predictions. To express model behaviour and thereby increasing transparency we develop a reinforcement learning (RL) based agent approach, which task is to generate short polynomials that can explain the model of the process from what it has learnt from process data. The RL agent is rewarded on how well it generates polynomials that can predict the process from a smaller subset of the process parameters. Agent training is done with the REINFORCE algorithm, which enables the sampling of multiple concurrently plausible polynomials. Having multiple polynomials, process developers can evaluate several alternative and plausible explanations, as observed in the historic process data. The presented approach gives both a trained generative model and a set of polynomials that can explain the process. The performance of the polynomials is as good as or better than more complex and less interpretable models. Further, the relative simplicity of the resulting polynomials allows good generalisation to fit new instances of data. The best of the resulting polynomials in our evaluation achieves a better $$R^2$$ R 2 score on the test set in comparison to the other machine learning models evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.