A parametric study was carried out for the first firing cycle of a 4-cylinder, 2.0-liter, turbocharged gasoline direct injection (GDI) engine. The primary goal was to see how changes in the fuel injection parameters would affect the GDI engine combustion and emissions for the first four combustion events that constitute the first firing cycle. Experimental studies were carried out with a custom-designed powertrain control system to measure the HC emissions and pressure development for the first firing cycle. The quantitative experimental results were accompanied by simulations of the detailed temporal and spatial fuel concentration profiles using Converge CFD engine simulation software. An alternative calculation method was used to calculate the average combustion equivalence ratio for each of the four cylinders. This method showed that the majority of the cold start HC emissions during the first firing cycle was unburned gasoline and its possible decomposition products, which did not contribute significantly to the combustion and heat release. For the same amount of fuel injected into a cylinder, increased fuel rail pressure resulted in better evaporation and combustion, while slightly increasing the HC emissions during the cold start process. A multiple injection strategy was studied that split the fuel delivery between the intake stroke and the compression stroke with either one or two injections in each of those strokes (two or four injections total). The quadruple injection strategy led to better first cycle combustion, with higher engine IMEP and lower HC emissions. This resulted from a richer fuel mixture in the region near the spark plug due to better fuel evaporation and a better spatial fuel distribution. While increasing fuel rail pressure with either injection strategy failed to significantly lower the HC emissions given the same amount of injected fuel mass, higher rail pressure with the quadruple injection strategy resulted in higher IMEP for the same amount of injected fuel; this may provide the possibility to reduce the total fuel injection mass which may have benefits for both fuel consumption and emissions.
A fractal engine simulation (FES) sub-model was integrated into three-dimensional simulations for modeling turbulent combustion for a gasoline direct injection (GDI) engine. The FES model assumes that the effects of turbulence on flame propagation are to wrinkle and stretch the flame, and fractal geometry is used to predict the surface area increase and thus the turbulent burning velocity. Different formulas for the four sequential stages of combustion in SI engines are proposed to account for the changing effects of turbulence throughout the combustion process. However, most prior studies related to the FES model were quasi-dimensional simulations, with few found in multi-dimensional studies, and none under cold start conditions or stratified charges. This paper describes how the model was implemented into multidimensional simulations in CONVERGE CFD, and what the formulas are in the four sequential stages of combustion in SI engines. The capabilities of the FES model for simulating the cold start cases, under the conditions of the dramatically changing engine speed and mixture stratification in a complex engine geometry, are presented in this study. The FES model was able to not only simulate the steady-state cases with constant engine speed, but also predict the in-cylinder pressure traces in all four cylinders for the very first firing cycle with transient engine speed, and gave good agreement with the experimental measurements under these extremely transient conditions. The uncertain maximum fractal dimension was chosen as 2.37 in this research, and a simple linear correlation with engine speed was used to obtain the coefficient used in calculating the kernel formation time which controls the so-called combustion or ignition delay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.