Two novel "turn-on" fluorescent probes with perylene tetracarboxylic diimide (PDI) as the fluorophore and two different di-(2-picolyl)-amine (DPA) groups as the metal ion receptor (PDI-1 and PDI-2) were successfully synthesized with satisfactory yields. PDI-1 exhibited high selectivity toward Ni(2+) in the presence of various other metal cations including Zn(2+), Cd(2+) and Cu(2+) which were expected to interfere significantly. A 1 : 2 stoichiometry was found for the complex formed by PDI-1 and Ni(2+) by a Job's plot and by non-linear least square fitting of the fluorescence titration curves. By introducing an extra diamino ethylene group between DPA and the phenyl bridge, the receptor was modified and the high selectivity of the sensor toward Ni(2+) shifted to Fe(3+). The enhancement factor of the fluorescence response of PDI-2 to Fe(3+) was as high as 138. The binding behavior of the receptors in these two compounds is affected significantly by the PDI fluorophores. Most interestingly, both Ni(2+) and Fe(3+) are paramagnetic metal ions, which are known as fluorescence quenchers and are rarely targeted with "turn-on" fluorescence probes. This result suggests that PDIs are favorable fluorophores for a "turn-on" fluorescence probe for paramagnetic transition metal ions because of their high oxidation potential.
Three perylene tetracarboxylic diimide (PDI) trimers substituted with different side groups at the bay positions were prepared with the triazine ring as a linkage. The free rotation of C-N-C bonds between the triazine ring and the PDI unit provide these molecules with some flexibility. The UV-vis absorption and fluorescence spectra of these three compounds show different concentration-dependent behaviors, which depend on the side groups at the bay positions. Significant aggregation in organic solvents was revealed by the electronic absorption and emission spectra as well as the fluorescence quantum yield calculation. The aggregation behavior of these compounds in the solid state were investigated by X-ray diffraction (XRD), and the morphology of the aggregates was examined by atomic force microscopy (AFM). The aggregation of trimer 1 with two phenoxy groups at the 1 and 7 positions results in long nanofibers whereas trimers 2 and 3 with dipiperidinyl groups or tetraphenoxyl groups at the bay positions form only particles. The results of this research revealed that PDI trimers with flexible structures can also self-assemble into large ordered aggregates such as those with rigid structure. This information is believed to be useful in the design of novel nanoorganic materials.
Two novel fluorescent dyes based on perylene tetracarboxylic diimides and BODIPY were designed and synthesized. Significant features, such as longer wavelength absorption and emission, high fluorescence quantum yields, and strong electron accepting abilities, are observed for these compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.