STING gain-of-function mice developed an interferon-independent SCID phenotype with a T-cell, B-cell, and natural killer cell developmental defect and hypogammaglobulinemia that is associated with signs of inflammation in lungs and kidneys. Only the intrinsic proliferative defect of T cells was partially interferon dependent.
Studies of mice deficient for autophagy in T cells since thymic development, concluded that autophagy is integral to mature T cell homeostasis. Basal survival and functional impairments in vivo, limited the use of these models to delineate the role of autophagy during the immune response. We generated Atg5f/f distal Lck (dLck)-cre mice, with deletion of autophagy only at a mature stage. In this model, autophagy deficiency impacts CD8+ T cell survival but has no influence on CD4+ T cell number and short-term activation. Moreover, autophagy in T cells is dispensable during early humoral response but critical for long-term antibody production. Autophagy in CD4+ T cells is required to transfer humoral memory as shown by injection of antigen-experienced cells in naive mice. We also observed a selection of autophagy-competent cells in the CD4+ T cell memory compartment. We performed in vitro differentiation of memory CD4+ T cells, to better characterize autophagy-deficient memory cells. We identified mitochondrial and lipid load defects in differentiated memory CD4+ T cells, together with a compromised survival, without any collapse of energy production. We then propose that memory CD4+ T cells rely on autophagy for their survival to regulate toxic effects of mitochondrial activity and lipid overload.
While negative selection of developing B cells in the periphery is well described, yet poorly understood, evidence of naïve B cell positive selection remains elusive. Using two humanized mouse models, we demonstrate that there is strong skewing of expressed immunoglobulin repertoire upon transit into the peripheral naïve B cell pool. This positive selection of expanded naïve B cells in humanized mice resembled that in healthy donors and was independent of autologous thymic tissue. In contrast, negative selection of autoreactive B cells required thymicderived regulatory T cells (Tregs) and MHC class II-restricted self-antigen presentation by B cells. Indeed, both defective MHC class II expression on their B cells in rare bare lymphocyte syndrome patients or prevention of self-antigen presentation via HLA-DM inhibition in humanized mice result in the production of autoreactive naïve B cells. These latter observations suggest that Tregs repress autoreactive naïve B cells continuously produced by the bone marrow. Thus, a model emerges in which both positive and negative selection shape the human naïve B cell repertoire and that each process is mediated by fundamentally different molecular and cellular mechanisms.
Systemic lupus erythematosus (SLE) is a severe and heterogeneous autoimmune disease with a complex genetic etiology, characterized by the production of various pathogenic autoantibodies, which participate in end-organ damages. The majority of human SLE occurs in adults as a polygenic disease, and clinical flares interspersed with silent phases of various lengths characterize the usual evolution of the disease in time. Trying to understand the mechanism of the different phenotypic traits of the disease, and considering the central role of B cells in SLE, we previously performed a detailed wide analysis of gene expression variation in B cells from quiescent SLE patients. This analysis pointed out an overexpression of TRIB1. TRIB1 is a pseudokinase that has been implicated in the development of leukemia and also metabolic disorders. It is hypothesized that Trib1 plays an adapter or scaffold function in signaling pathways, notably in MAPK pathways. Therefore, we planned to understand the functional significance of TRIB1 overexpression in B cells in SLE. We produced a new knock-in model with B-cell-specific overexpression of Trib1. We showed that overexpression of Trib1 specifically in B cells does not impact B cell development nor induce any development of SLE symptoms in the mice. By contrast, Trib1 has a negative regulatory function on the production of immunoglobulins, notably IgG1, but also on the production of autoantibodies in an induced model. We observed a decrease of Erk activation in BCR-stimulated Trib1 overexpressing B cells. Finally, we searched for Trib1 partners in B cells by proteomic analysis in order to explore the regulatory function of Trib1 in B cells. Interestingly, we find an interaction between Trib1 and CD72, a negative regulator of B cells whose deficiency in mice leads to the development of autoimmunity. In conclusion, the overexpression of Trib1 could be one of the molecular pathways implicated in the negative regulation of B cells during SLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.