Bemisia tabaci, an invasive pest that causes crop damage worldwide, is a highly differentiated species complex, divided into biotypes that have mainly been defined based on mitochondrial DNA sequences. Although endosymbionts can potentially induce population differentiation, specialization and indirect selection on mtDNA, studies have largely ignored these influential passengers in B. tabaci, despite as many as seven bacterial endosymbionts have been identified. Here, we investigate the composition of the whole bacterial community in worldwide populations of B. tabaci, together with host genetic differentiation, focusing on the invasive B and Q biotypes. Among 653 individuals studied, more than 95% of them harbour at least one secondary endosymbiont, and multiple infections are very common. In addition, sequence analyses reveal a very high diversity of facultative endosymbionts in B. tabaci, with some bacterial genus being represented by more than one strain. In the B and Q biotypes, nine different strains of bacteria have been identified. The mtDNA-based phylogeny of B. tabaci also reveals a very high nucleotide diversity that partitions the two ITS clades (B and Q) into six CO1 genetic groups. Each genetic group is in linkage disequilibrium with a specific combination of endosymbionts. All together, our results demonstrate the rapid dynamics of the bacterial endosymbiont-host associations at a small evolutionary scale, questioning the role of endosymbiotic communities in the evolution of the Bemisia tabaci species complex and strengthening the need to develop a metacommunity theory of inherited endosymbionts.
Wolbachia is an intracellular bacterium generally described as being a facultative reproductive parasite. However, Wolbachia is necessary for oogenesis completion in the wasp Asobara tabida. This dependence has evolved recently as a result of interference with apoptosis during oogenesis. Through comparative transcriptomics between symbiotic and aposymbiotic individuals, we observed a differential expression of ferritin, which forms a complex involved in iron storage. Iron is an essential element that is in limited supply in the cell. However, it is also a highly toxic precursor of Reactive Oxygen Species (ROS). Ferritin has also been shown to play a key role in host–pathogen interactions. Measuring ferritin by quantitative RT-PCR, we confirmed that ferritin was upregulated in aposymbiotic compared to symbiotic individuals. Manipulating the iron content in the diet, we showed that iron overload markedly affected wasp development and induced apoptotic processes during oogenesis in A. tabida, suggesting that the regulation of iron homeostasis may also be related to the obligate dependence of the wasp. Finally, we demonstrated that iron metabolism is influenced by the presence of Wolbachia not only in the obligate mutualism with A. tabida, but also in facultative parasitism involving Drosophila simulans and in Aedes aegypti cells. In these latter cases, the expression of Wolbachia bacterioferritin was also increased in the presence of iron, showing that Wolbachia responds to the concentration of iron. Our results indicate that Wolbachia may generally interfere with iron metabolism. The high affinity of Wolbachia for iron might be due to physiological requirement of the bacterium, but it could also be what allows the symbiont to persist in the organism by reducing the labile iron concentration, thus protecting the cell from oxidative stress and apoptosis. These findings also reinforce the idea that pathogenic, parasitic and mutualistic intracellular bacteria all use the same molecular mechanisms to survive and replicate within host cells. By impacting the general physiology of the host, the presence of a symbiont may select for host compensatory mechanisms, which extends the possible consequences of persistent endosymbiont on the evolution of their hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.