Human breast milk (HBM) is a source of essential nutrients for infants and is particularly recommended for preterm neonates when their own mother’s milk is not available. It provides protection against infections and decreases necrotizing enterocolitis and cardiovascular diseases. Nevertheless, HBM spoilage can occur due to contamination by pathogens, and the risk of a shortage of HBM is very often present. B. cereus is the most frequent ubiquitous bacteria responsible for HBM being discarded. It can contaminate HBM at all stages, from its collect point to the storage and delivery. B. cereus can induce severe infection in newborns with very low birth weight, with sometimes fatal outcomes. Although the source of contamination is rarely identified, in some cases, HBM was suspected as a potential source. Even if the risk is low, as infection due to B. cereus in preterm infants should not be overlooked, human milk banks follow strict procedures to avoid contamination, to accurately identify remaining bacteria following pasteurization and to discard non-compliant milk samples. In this review, we present a literature overview of B. cereus infections reported in neonates and the suspected sources of contamination. We highlight the procedures followed by the human milk banks from the collection of the milk to its microbiological characterization in Europe. We also present improved detection and decontamination methods that might help to decrease the risk and to preserve the public’s confidence in this vital biological product for infants whose mothers cannot breastfeed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.