Background Enterococci intrinsically resistant to cephalosporins represent a major cause of healthcare-associated infections, and the emergence of MDR makes therapeutic approaches particularly challenging. Objectives Teichoic acids are cell wall glycopolymers present in Gram-positive bacteria. Teichoic acids can be modified by d-alanylation, which requires four proteins encoded by the dltABCD operon. Our objective was to evaluate the Dlt system as a druggable target to treat enterococcal infections. Methods The susceptibility of a d-alanylation-deficient strain of Enterococcus faecalis to β-lactam antibiotics individually and/or in combination was analysed. Moreover, a DltA inhibitor was synthesized to test pharmacological inhibition of d-alanylation in vivo and in host using the animal model Galleria mellonella with different clinical isolates of E. faecalis and Enterococcus faecium. Results Most cephalosporins used as mono treatment had no impact on survival of the parental strain, but were slightly lethal for the dltA mutant of E. faecalis. Addition of a very low concentration of amoxicillin significantly increased killing of the dltA mutant under these conditions. The most spectacular effect was obtained with a combination of cefotaxime (1 mg/L) and amoxicillin (0.03 mg/L). In the presence of the inhibitor, the WT strain was as susceptible to this combination treatment as the dltA mutant. This molecule associated with the antibiotics was also effective in killing other E. faecalis clinical isolates and successfully prevented death of Galleria infected with either E. faecalis or E. faecium. Conclusions The combined results support the potential usefulness of the Dlt system as a target to potentiate antibiotic combination therapies for the treatment of drug-resistant enterococci.
Background MRSA are high-priority multidrug-resistant pathogens. Although there are still some antibiotics active against MRSA, continuous efforts to discover new antibiotics and treatment strategies are needed because resistance to these new drugs has already been reported. Objectives Here we explore if d-alanylation of teichoic acids (TAs) mediated by the dlt operon gene products might be a druggable target to overcome β-lactam-resistance of MRSA. Methods MICs and bactericidal effects of several β-lactam antibiotics were monitored in a panel of clinical MRSA strains with genetic or chemically induced deficiency in d-alanylation of TAs. Efficiency of the chemical inhibitor to rescue MRSA-infected larvae of Galleria mellonella as well as its ability to prevent or eradicate biofilms of S. aureus were analysed. Results Genetic inactivation of the Dlt system or its chemical inhibition re-sensitizes MRSA to β-lactams. Among the 13 strains, the most pronounced effect was obtained using the inhibitor with imipenem, reducing the median MIC from 16 to 0.25 mg/L. This combination was also bactericidal in some strains and significantly protected G. mellonella larvae from lethal MRSA infections. Finally, inactivation of d-alanylation potentiated the effect of imipenem on inhibition and/or eradication of biofilm. Conclusions Our combined results show that highly efficient inhibitors of d-alanylation of TAs targeting enzymes of the Dlt system should be promising therapeutic adjuvants, especially in combination with carbapenems, for restoring the therapeutic efficacy of this class of antibiotics against MRSA.
Tri‐ and tetra‐substituted alkenes, including fluoroalkenes, were prepared by a selective ring‐opening reaction of functionalized oxetanes. The introduction of adenine nucleic base allows the synthesis of alkenyl and fluoroalkenyl derivatives that were evaluated towards DltA enzyme as potential nucleoside mimics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.