1 heprtment of qeosienesD niversity of ysloD ox IHPRD HQIT ysloD xorwy 2 serreD niversit e qrenole s nd gxD f SQD QVHRI qrenoleD prne 3 hysis of qeologil roessesD niversity of ysloD ox IHRUD HQIT ysloD xorwy Abstract grontes re mjor sedimentry mterils found in mny upper lyers of the irth9s rustF nderstnding their omption ehviour is importnt for porosity predition in sedimentry sins nd to improve the knowledge out seling of tive fults t shllow depthsD where the fults rossEut limestone formtionsF sn rontesD s opE posed to siliilsti sedimentsD digenesis strts t shllow depths @
[1] For the first time, nanometer resolution techniques both in situ and ex situ were compared in order to study calcite dissolution under stress. The obtained results enabled identification of the relative importance of pressure solution driven by normal load and free surface dissolution driven by strain energy. It is found that pressure solution of calcite crystals at the grain scale occurred by two different mechanisms. Diffusion of the dissolved solid took place either at a rough calcite/indenter interface, or through cracks that propagated from the contact toward the less stressed part of the crystal. It is also found that strain rates are mostly a function of the active process, i.e., pressure solution associated or not with cracks, rather than being influenced by stress variations. Strain rates obtained in this study are in agreement with published data of experimental calcite and carbonate dissolution under stress.
[1] Uniaxial compression tests were conducted on bioclastic sand and crushed calcite crystals. Mechanical and chemical processes were investigated to better quantify petrophysical properties of carbonates and their evolution with burial or during fault zone processes. The grain size was in the range 63-500 mm, and the samples were saturated with water in equilibrium with carbonate, glycol, decane, or air. During loading, effective stress was increased to 32 MPa. Mechanical compaction processes (i.e., grain rearrangement, crushing) could be separated from chemical processes (i.e., pressure solution, subcritical crack growth). P and S waves monitored during the tests showed low velocity in samples saturated with reactive fluids. This suggested that chemical reactions at grain contacts reduced the grain framework stiffness. Creep tests were also carried out on bioclastic sand at effective stress of 10, 20, and 30 MPa. No creep was observed in samples saturated with nonreactive fluids. For all the samples saturated with reactive fluids, strain as a function of time was described by a power law of time with a single exponent close to 0.23. Parameters controlling creep rate were, in order of importance, grain size, effective stress, and water saturation. Microstructural observations showed that compaction of bioclastic carbonate sand occurred both mechanically and chemically. Crack propagation probably contributed to mechanical compaction and enhanced chemical compaction during creep. Experimental compaction showed that compaction of carbonates should be modeled as a function of both mechanical and chemical processes, also at relatively shallow depth and low temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.