IMPORTANCE Tractography studies investigating white matter (WM) abnormalities in patients with bipolar disorder have yielded heterogeneous results owing to small sample sizes. The small size limits their generalizability, a critical issue for neuroimaging studies of biomarkers of bipolar I disorder (BPI). OBJECTIVES To study WM abnormalities using whole-brain tractography in a large international multicenter sample of BPI patients and to compare these alterations between patients with or without a history of psychotic features during mood episodes. DESIGN, SETTING, AND PARTICIPANTS A cross-sectional, multicenter, international, Q-ball imaging tractography study comparing 118 BPI patients and 86 healthy control individuals. In addition, among the patient group, we compared those with and without a history of psychotic features. University hospitals in France, Germany, and the United States contributed participants. INTERVENTIONS Participants underwent assessment using the Diagnostic Interview for Genetic Studies at the French sites or the Structured Clinical Interview for DSM-IV at the German and US sites. Diffusion-weighted magnetic resonance images were acquired using the same acquisition parameters and scanning hardware at each site. We reconstructed 22 known deep WM tracts using Q-ball imaging tractography and an automatized segmentation technique. MAIN OUTCOMES AND MEASURES Generalized fractional anisotropy values along each reconstructed WM tract. RESULTS Compared with controls, BPI patients had significant reductions in mean generalized fractional anisotropy values along the body and the splenium of the corpus callosum, the left cingulum, and the anterior part of the left arcuate fasciculus when controlling for age, sex, and acquisition site (corrected for multiple testing). Patients with a history of psychotic features had a lower mean generalized fractional anisotropy value than those without along the body of the corpus callosum (corrected for multiple testing). CONCLUSIONS AND RELEVANCE In this multicenter sample, BPI patients had reduced WM integrity in interhemispheric, limbic, and arcuate WM tracts. Interhemispheric pathways are more disrupted in patients with than in those without psychotic symptoms. Together these results highlight the existence of an anatomic disconnectivity in BPI and further underscore a role for interhemispheric disconnectivity in the pathophysiological features of psychosis in BPI.
Human brain connectivity is extremely complex and variable across subjects. While long association and projection bundles are stable and have been deeply studied, short association bundles present higher intersubject variability, and few studies have been carried out to adequately describe the structure, shape, and reproducibility of these bundles. However, their analysis is crucial to understand brain function and better characterize the human connectome. In this study, we propose an automatic method to identify reproducible short association bundles of the superficial white matter, based on intersubject hierarchical clustering. The method is applied to the whole brain and finds representative clusters of similar fibers belonging to a group of subjects, according to a distance metric between fibers. We experimented with both affine and non-linear registrations and, due to better reproducibility, chose the results obtained from non-linear registration. Once the clusters are calculated, our method performs automatic labeling of the most stable connections based on individual cortical parcellations. We compare results between two independent groups of subjects from a HARDI database to generate reproducible connections for the creation of an atlas. To perform a better validation of the results, we used a bagging strategy that uses pairs of groups of 27 subjects from a database of 74 subjects. The result is an atlas with 44 bundles in the left hemisphere and 49 in the right hemisphere, of which 33 bundles are found in both hemispheres. Finally, we use the atlas to automatically segment 78 new subjects from a different HARDI database and to analyze stability and lateralization results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.