Although radiotherapy is commonly used to treat cancer, its beneficial outcome is frequently hampered by the radiation resistance of tumor cells and adverse reactions in normal tissues. Mechanisms of cell-to-cell communication and how intercellular signals are translated into cellular responses, have become topics of intense investigation, particularly within the field of radiobiology. A substantial amount of evidence is available demonstrating that both gap junctional and paracrine communication pathways can propagate radiation-induced biological effects at the intercellular level, commonly referred to as radiation-induced bystander effects (RIBE). Multiple molecular signaling mechanisms involving oxidative stress, kinases, inflammatory molecules, and Ca are postulated to contribute to RIBE. Ca is a highly versatile and ubiquitous second messenger that regulates diverse cellular processes via the interaction with various signaling cascades. It furthermore provides a fast system for the dissemination of information at the intercellular level. Channels formed by transmembrane connexin (Cx) proteins, i.e. hemichannels and gap junction channels, can mediate the cell-to-cell propagation of increases in intracellular Ca by ministering paracrine and direct cell-cell communication, respectively. We here review current knowledge on radiation-induced signaling mechanisms in irradiated and bystander cells, particularly focusing on the contribution of oxidative stress, Ca and Cx channels. By illustrating the tight interplay between these different partners, we provide a conceptual framework for intercellular Ca signaling as a key player in modulating the RIBE and the overall response to radiation.
Radiotherapeutic treatment consists of targeted application of radiation beams to a tumor but exposure of surrounding healthy tissue is inevitable. In the brain, ionizing radiation induces breakdown of the blood-brain barrier by effects on brain microvascular endothelial cells. Damage from directly irradiated cells can be transferred to surrounding non-exposed bystander cells, known as the radiation-induced bystander effect. We investigated involvement of connexin channels and paracrine signaling in radiation-induced bystander DNA damage in brain microvascular endothelial cells exposed to focused X-rays. Irradiation caused DNA damage in the directly exposed area, which propagated over several millimeters in the bystander area. DNA damage was significantly reduced by the connexin channel-targeting peptide Gap26 and the Cx43 hemichannel blocker TAT-Gap19. ATP release, dye uptake, and patch clamp experiments showed that hemichannels opened within 5 min post irradiation in both irradiated and bystander areas. Bystander signaling involved cellular Ca 2+ dynamics and IP 3 , ATP, ROS, and NO signaling, with Ca 2+ , IP 3 , and ROS as crucial propagators of DNA damage. We conclude that bystander effects are communicated by a concerted cascade involving connexin channels, and IP 3 /Ca 2+ , ATP, ROS, and NO as major contributors of regenerative signal expansion.
Background: Emerging evidence indicates an excess risk of late occurring cardiovascular diseases, especially atherosclerosis, after thoracic cancer radiotherapy. Ionizing radiation (IR) induces cellular effects which may induce endothelial cell dysfunction, an early marker for atherosclerosis. In addition, intercellular communication through channels composed of transmembrane connexin proteins (Cxs), i.e. Gap junctions (direct cell-cell coupling) and hemichannels (paracrine release/uptake pathway) can modulate radiation-induced responses and therefore the atherosclerotic process. However, the role of endothelial hemichannel in IR-induced atherosclerosis has never been described before. Materials and Methods: Telomerase-immortalized human Coronary Artery/ Microvascular Endothelial cells (TICAE/TIME) were exposed to X-rays (0.1 and 5 Gy). Production of reactive oxygen species (ROS), DNA damage, cell death, inflammatory responses, and senescence were assessed with or without applying a Cx43 hemichannel blocker (TAT-Gap19). Results: We report here that IR induces an increase in oxidative stress, cell death, inflammatory responses (IL-8, IL-1β, VCAM-1, MCP-1, and Endothelin-1) and premature cellular senescence in TICAE and TIME cells. These effects are significantly reduced in the presence of the Cx43 hemichannel-targeting peptide TAT-Gap19. Conclusion: Our findings suggest that endothelial Cx43 hemichannels contribute to various IR-induced processes, such as ROS, cell death, inflammation, and senescence, resulting in an increase in endothelial cell damage, which could be protected by blocking these hemichannels. Thus, targeting Cx43 hemichannels may potentially exert radioprotective effects.
Photodynamic therapy combines three non-toxic components: light, oxygen and a photosensitizer to generate singlet oxygen and/or other ROS molecules in order to target destruction of cancer cells. The damage induced in the targeted cells can furthermore propagate to non-exposed bystander cells thereby exacerbating the damage. Ca signaling is strongly intertwined with ROS signaling and both play crucial roles in cell death. In this review we aimed to review current knowledge on the role of Ca and ROS signaling, their effect on cell-cell propagation via connexin-linked mechanisms and the outcome in terms of cell death. In general, photodynamic therapy results in an increased cytosolic Ca concentration originating from Ca entry or Ca release from internal stores. While photodynamic therapy can certainly induce cell death, the outcome depends on the cell type and the photosensitizer used. Connexin channels propagating the Ca signal, and presumably regenerating ROS at distance, may play a role in spreading the effect to neighboring non-exposed bystander cells. Given the various cell types and photosensitizers used, there is currently no unified signaling scheme to explain the role of Ca and connexins in the responses following photodynamic therapy. This article is part of a Special Issue entitled: Calcium signaling in health, disease and therapy edited by Geert Bultynck and Jan Parys.
Intercellular communication occurring via gap junction channels is considered a key mechanism for synchronizing physiological functions of cells and for the maintenance of tissue homeostasis. Gap junction channels are protein channels that are situated between neighboring cells and that provide a direct, yet selective route for the passage of small hydrophilic biomolecules and ions. Here, an electroporation method is described to load a localized area within an adherent cell monolayer with a gap junction-permeable fluorescent reporter dye. The technique results in a rapid and efficient labeling of a small patch of cells within the cell culture, without affecting cellular viability. Dynamic and quantitative information on gap junctional communication can subsequently be extracted by tracing the intercellular movement of the dye via time-lapse microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.