The blood-brain barrier (BBB) limits the delivery of systemically administered drugs to the brain. Methods to circumvent the BBB have been developed, but none are used in standard clinical practice. The lack of adoption of existing methods is due to procedural invasiveness, serious adverse effects, and the complications associated with performing such techniques coincident with repeated drug administration, which is customary in chemotherapeutic protocols. Pulsed ultrasound, a method for disrupting the BBB, was shown to effectively increase drug concentrations and to slow tumor growth in preclinical studies. We now report the interim results of an ultrasound dose-escalating phase 1/2a clinical trial using an implantable ultrasound device system, SonoCloud, before treatment with carboplatin in patients with recurrent glioblastoma (GBM). The BBB of each patient was disrupted monthly using pulsed ultrasound in combination with systemically injected microbubbles. Contrast-enhanced magnetic resonance imaging (MRI) indicated that the BBB was disrupted at acoustic pressure levels up to 1.1 megapascals without detectable adverse effects on radiologic (MRI) or clinical examination. Our preliminary findings indicate that repeated opening of the BBB using our pulsed ultrasound system, in combination with systemic microbubble injection, is safe and well tolerated in patients with recurrent GBM and has the potential to optimize chemotherapy delivery in the brain.
Key Results 1. Of the 73 patients who presented neurological symptoms, 43 had pathological MRI findings (58.9%), including 17 with acute ischemic infarcts (23.3%), 1 with a deep venous thrombosis (1.4%), 8 with multiple microhemorrhages (11.3%), 22 with perfusion abnormalities (47.7%), 3 with restricted diffusion foci within the corpus callosum consistent with cytotoxic lesions of the corpus callosum (CLOCC, 4.1%). 2. Imaging patterns possibly related to COVID-19 were observed in patients in intensive care and included multifocal white matter enhancing lesions seen (4 patients, 5%) and basal ganglia abnormalities (4 patients, 5%). Summary Statement MRI abnormalities included cerebrovascular lesions, perfusion abnormalities, cytotoxic lesions of the corpus callosum, ICU-related complications, white matter enhancing lesions and basal ganglia abnormalities.
Purpose: The blood-brain barrier (BBB) limits the efficacy of drug therapies for glioblastoma (GBM). Preclinical data indicate that low-intensity pulsed ultrasound (LIPU) can transiently disrupt the BBB and increase intracerebral drug concentrations.Patients and Methods: A first-in-man, single-arm, singlecenter trial (NCT02253212) was initiated to investigate the transient disruption of the BBB in patients with recurrent GBM. Patients were implanted with a 1-MHz, 11.5-mm diameter cranial ultrasound device (SonoCloud-1, CarThera). The device was activated monthly to transiently disrupt the BBB before intravenous carboplatin chemotherapy.Results: Between 2014 and 2016, 21 patients were registered for the study and implanted with the SonoCloud-1; 19 patients received at least one sonication. In 65 ultrasound sessions, BBB disruption was visible on T1w MRI for 52 sonications. Treatment-related adverse events observed were transient and manageable: a transient edema at H1 and at D15. No carboplatin-related neurotoxicity was observed. Patients with no or poor BBB disruption (n ¼ 8) visible on MRI had a median progression-free survival (PFS) of 2.73 months, and a median overall survival (OS) of 8.64 months. Patients with clear BBB disruption (n ¼ 11) had a median PFS of 4.11 months, and a median OS of 12.94 months.Conclusions: SonoCloud-1 treatments were well tolerated and may increase the effectiveness of systemic drug therapies, such as carboplatin, in the brain without inducing neurotoxicity. NOTE: Data are median (range). Idbaih et al. NOTE: The occurrence of each AE is listed as well as the total number of patients affected, as some patients might have experienced the same AE multiple times over the course of therapy.Blood-Brain Barrier Disruption by Ultrasound in GBM www.aacrjournals.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.