International audienceThe Soil Moisture and Ocean Salinity (SMOS) mission is European Space Agency (ESA's) second Earth Explorer Opportunity mission, launched in November 2009. It is a joint program between ESA Centre National d'Etudes Spatiales (CNES) and Centro para el Desarrollo Tecnologico Industrial. SMOS carries a single payload, an L-Band 2-D interferometric radiometer in the 1400-1427 MHz protected band. This wavelength penetrates well through the atmosphere, and hence the instrument probes the earth surface emissivity. Surface emissivity can then be related to the moisture content in the first few centimeters of soil, and, after some surface roughness and temperature corrections, to the sea surface salinity over ocean. The goal of the level 2 algorithm is thus to deliver global soil moisture (SM) maps with a desired accuracy of 0.04 m3/m3. To reach this goal, a retrieval algorithm was developed and implemented in the ground segment which processes level 1 to level 2 data. Level 1 consists mainly of angular brightness temperatures (TB), while level 2 consists of geophysical products in swath mode, i.e., as acquired by the sensor during a half orbit from pole to pole. In this context, a group of institutes prepared the SMOS algorithm theoretical basis documents to be used to produce the operational algorithm. The principle of the SM retrieval algorithm is based on an iterative approach which aims at minimizing a cost function. The main component of the cost function is given by the sum of the squared weighted differences between measured and modeled TB data, for a variety of incidence angles. The algorithm finds the best set of the parameters, e.g., SM and vegetation characteristics, which drive the direct TB model and minimizes the cost function. The end user Level 2 SM product contains SM, vegetation opacity, and estimated dielectric constant of any surface, TB computed at 42.5$^{circ}$, flags and quality indices, and other parameters o- interest. This paper gives an overview of the algorithm, discusses the caveats, and provides a glimpse of the Cal Val exercises
Abstract. In this study, a global land data assimilation system (LDAS-Monde) is applied over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. LDAS-Monde is able to ingest information from satellite-derived surface soil moisture (SSM) and leaf area index (LAI) observations to constrain the interactions between soil–biosphere–atmosphere (ISBA, Interactions between Soil, Biosphere and Atmosphere) land surface model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (ISBA-CTRIP) continental hydrological system. It makes use of the CO2-responsive version of ISBA which models leaf-scale physiological processes and plant growth. Transfer of water and heat in the soil rely on a multilayer diffusion scheme. SSM and LAI observations are assimilated using a simplified extended Kalman filter (SEKF), which uses finite differences from perturbed simulations to generate flow dependence between the observations and the model control variables. The latter include LAI and seven layers of soil (from 1 to 100 cm depth). A sensitivity test of the Jacobians over 2000–2012 exhibits effects related to both depth and season. It also suggests that observations of both LAI and SSM have an impact on the different control variables. From the assimilation of SSM, the LDAS is more effective in modifying soil moisture (SM) from the top layers of soil, as model sensitivity to SSM decreases with depth and has almost no impact from 60 cm downwards. From the assimilation of LAI, a strong impact on LAI itself is found. The LAI assimilation impact is more pronounced in SM layers that contain the highest fraction of roots (from 10 to 60 cm). The assimilation is more efficient in summer and autumn than in winter and spring. Results shows that the LDAS works well constraining the model to the observations and that stronger corrections are applied to LAI than to SM. A comprehensive evaluation of the assimilation impact is conducted using (i) agricultural statistics over France, (ii) river discharge observations, (iii) satellite-derived estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project and (iv) spatially gridded observation-based estimates of upscaled gross primary production and evapotranspiration from the FLUXNET network. Comparisons with those four datasets highlight neutral to highly positive improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.