Multi-fitting against several target files obtained at different growth stages gave better parameter accuracy than single fitting at maturity only, and permitted extracting generic organ expansion kinetics from the static observations. The 2000 model gave excellent predictions of plant architecture and vegetative growth for the other three seasons having different temperature regimes, but predictions of inter-seasonal variability of biomass partitioning during grain filling were less accurate. This was probably due to insufficient consideration of processes governing cob sink size and terminal leaf senescence. Further perspectives for model improvement are discussed.
Because of rapid advances in functional genomics there is an increasing demand for models simulating complex traits, such as the physiological and environmental controls of plant morphology. This paper describes, validates and explores the behaviour of the structural–functional model EcoMeristem, developed for cereals in the context of the Generation Challenge Program (GCP; CGIAR). EcoMeristem constructs the plant on the basis of an organogenetic body plan, driven by intrinsic (genetic) behavioural norms of meristems. These norms consist of phenological–topological rules for organ initiation and pre-dimensioning (sink creation) and rules enabling feedbacks of the plant’s resource status on the organogenetic processes. Plant resource status is expressed by a state variable called Internal Competition Index (Ic) calculated daily as the ratio of assimilate source (supply) over the sum of active sinks (demand). Ic constitutes an internal signal analogous to sugar signalling. Ic affects potential phytomer size, tiller initiation, leaf senescence, and carbohydrate storage and mobilisation. The model was calibrated and tested on IR64 rice grown in controlled environments, and validated with field observations for the same cultivar (Philippines). Observed distributions and dynamics of soluble sugars and starch in plant organs supported the model concepts of internal competition and the role of reserves as a buffer for Ic fluctuations. Model sensitivity analyses suggested that plant growth and development depend not only on assimilate supply, but also on organogenesis-based demand. If true, this conclusion has important consequences for crop improvement strategies.
This result was consistent with the hypothesis that internal plant competition for assimilates regulates tillering in sorghum. Hence, the framework outlined has a predictive value that could provide the basis for dynamic simulation of tillering in crop growth models.
Sorghum is increasingly used as a biomass crop worldwide. Its genetic diversity provides a large range of stem biochemical composition suitable for various end-uses as bioenergy or forage. Its drought tolerance enables it to reasonably sustain biomass production under water limited conditions. However, drought effect on the accumulation of sorghum stem biomass remains poorly understood which limits progress in crop improvement and management. This study aimed at identifying the morphological, biochemical and histological traits underlying biomass accumulation in the sorghum stem and its plasticity in response to water deficit. Two hybrids (G1, G4) different in stem biochemical composition (G4, more lignified, less sweet) were evaluated during 2 years in the field in Southern France, under two water treatments differentiated during stem elongation (irrigated; 1 month dry-down until an average soil water deficit of -8.85 bars). Plant phenology was observed weekly. At the end of the water treatment and at final harvest, plant height, stem and leaf dry-weight and the size, biochemical composition and tissue histology of internodes at 2–4 positions along the stem were measured. Stem biomass accumulation was significantly reduced by drought (in average 42% at the end of the dry-down). This was due to the reduction of the length, but not diameter, of the internodes expanded during water deficit. These internodes had more soluble sugar but lower lignin and cellulose contents. This was associated with a decrease of the areal proportion of lignified cell wall in internode outer zone whereas the areal proportion of this zone was not affected. All internodes for a given genotype and environment followed a common histochemical dynamics. Hemicellulose content and the areal proportion of inner vs. outer internode tissues were set up early during internode growth and were not drought responsive. G4 exhibited a higher drought sensitivity than G1 for plant height only. At final harvest, the stem dry weight was only 18% lower in water deficit (re-watered) compared to well-watered treatment and internodes growing during re-watering were similar to those on the well-watered plants. These results are being valorized to refine the phenotyping of sorghum diversity panels and breeding populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.