The Sonic hedgehog (Shh) pathway plays a critical role in hair follicle physiology and is constitutively active in basal cell carcinomas (BCCs), the most common human malignancy. Type 3 iodothyronine deiodinase (D3), the thyroid hormone-inactivating enzyme, is frequently expressed in proliferating and neoplastic cells, but its role in this context is unknown. Here we show that Shh, through Gli2, directly induces D3 in proliferating keratinocytes and in mouse and human BCCs. We demonstrate that Gli-induced D3 reduces intracellular active thyroid hormone, thus resulting in increased cyclin D1 and keratinocyte proliferation. D3 knockdown caused a 5-fold reduction in the growth of BCC xenografts in nude mice. Shh-induced thyroid hormone degradation via D3 synergizes with the Shh-mediated reduction of the type 2 deiodinase, the thyroxine-activating enzyme, and both effects are reversed by cAMP. This previously unrecognized functional cross-talk between Shh/Gli2 and thyroid hormone in keratinocytes is a pathway by which Shh produces its proliferative effects and offers a potential therapeutic approach to BCC.basal cell carcinoma ͉ thyroxine ͉ differentiation ͉ cancer T hyroid hormone action is regulated by the activity of the deiodinases. Type 2 deiodinase (D2) activates the prohormone thyroxine (T4) by converting it to thyroid hormone (T3), whereas D3, by inactivating T3, terminates thyroid hormone action (1). All vertebrates express D2 and D3 that, in adults, contribute to plasma T3 and T4 homeostasis by their concerted actions with the hypothalamic-pituitary feedback axis. This homeostatic mechanism is possible because the Dio3 gene is transcriptionally stimulated by T3, whereas D2 is inhibited by two thyroid hormone-mediated effects, a transcriptional downregulation of Dio2 as well as protein inactivation by ubiquitination (for review, see ref.2). During development, preprogrammed changes in D2 and D3 expression are thought to regulate intracellular T3 concentrations essential to the normal development of the central nervous system, including the retina and the inner ear (3-6). However, the signals governing the changes in D2 and D3 expression during these complex processes are largely unknown.New insight into the developmental regulation of deiodinase expression has recently been obtained in the chicken growth plate, where Indian hedgehog induces WSB-1, an E3 ubiquitin ligase adaptor that inactivates D2 (7). The hedgehog pathway, acting through the Gli family of transcription factors, determines patterns of cell growth and differentiation in a wide variety of developmental settings (8-13). Given that, in general, signals regulating D2 expression affect D3 in a reciprocal fashion (2), we hypothesized that hedgehog proteins could up-regulate D3 while suppressing D2 expression. To explore this possibility, we turned to skin, a system in which Sonic hedgehog (Shh) is known to play dominant physiological as well as pathological roles (14). Both D2 and D3 are present in skin, a well recognized target of thyroid hormone...
Mitochondrial biogenesis, which depends on nuclear as well as mitochondrial genes, occurs in response to increased cellular ATP demand. The nuclear transcriptional factors, estrogen‐related receptor α (ERRα) and nuclear respiratory factors 1 and 2, are associated with the coordination of the transcriptional machinery governing mitochondrial biogenesis, whereas coactivators of the peroxisome proliferator‐activated receptor γ coactivator‐1 (PGC‐1) family serve as mediators between the environment and this machinery. In the context of proliferating cells, PGC‐1‐related coactivator (PRC) is a member of the PGC‐1 family, which is known to act in partnership with nuclear respiratory factors, but no functional interference between PRC and ERRα has been described so far. We explored three thyroid cell lines, FTC‐133, XTC.UC1 and RO 82 W‐1, each characterized by a different mitochondrial content, and studied their behavior towards PRC and ERRα in terms of respiratory efficiency. Overexpression of PRC and ERRα led to increased respiratory chain capacity and mitochondrial mass. The inhibition of ERRα decreased cell growth and respiratory chain capacity in all three cell lines. However, the inhibition of PRC and ERRα produced a greater effect in the oxidative cell model, decreasing the mitochondrial mass and the phosphorylating respiration, whereas the nonphosphorylating respiration remained unchanged. We therefore hypothesize that the ERRα–PRC complex plays a role in arresting the cell cycle through the regulation of oxidative phosphorylation in oxidative cells, and through some other pathway in glycolytic cells.
BackgroundRecent data suggests the involvement of mitochondrial dynamics in cardiac ischemia/reperfusion (I/R) injuries. Whilst excessive mitochondrial fission has been described as detrimental, the role of fusion proteins in this context remains uncertain.ObjectivesTo investigate whether Opa1 (protein involved in mitochondrial inner-membrane fusion) deficiency affects I/R injuries.Methods and ResultsWe examined mice exhibiting Opa1delTTAG mutations (Opa1+/-), showing 70% Opa1 protein expression in the myocardium as compared to their wild-type (WT) littermates. Cardiac left-ventricular systolic function assessed by means of echocardiography was observed to be similar in 3-month-old WT and Opa1+/- mice. After subjection to I/R, infarct size was significantly greater in Opa1+/- than in WTs both in vivo (43.2±4.1% vs. 28.4±3.5%, respectively; p<0.01) and ex vivo (71.1±3.2% vs. 59.6±8.5%, respectively; p<0.05). No difference was observed in the expression of other main fission/fusion protein, oxidative phosphorylation, apoptotic markers, or mitochondrial permeability transition pore (mPTP) function. Analysis of calcium transients in isolated ventricular cardiomyocytes demonstrated a lower sarcoplasmic reticulum Ca2+ uptake, whereas cytosolic Ca2+ removal from the Na+/Ca2+ exchanger (NCX) was increased, whilst SERCA2a, phospholamban, and NCX protein expression levels were unaffected in Opa1+/- compared to WT mice. Simultaneous whole-cell patch-clamp recordings of mitochondrial Ca2+ movements and ventricular action potential (AP) showed impairment of dynamic mitochondrial Ca2+ uptake and a marked increase in the AP late repolarization phase in conjunction with greater occurrence of arrhythmia in Opa1+/- mice.ConclusionOpa1 deficiency was associated with increased sensitivity to I/R, imbalance in dynamic mitochondrial Ca2+ uptake, and subsequent increase in NCX activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.