Pseudomonas aeruginosa COL-1 was identified in a blood culture of a 39-year-old-woman treated with imipenem in Marseilles, France, in 1996. This strain was resistant to -lactams, including ureidopenicillins, ticarcillin-clavulanic acid, cefepime, ceftazidime, imipenem, and meropenem, but remained susceptible to the monobactam aztreonam. The carbapenem-hydrolyzing -lactamase gene of P. aeruginosa COL-1 was cloned, sequenced, and expressed in Escherichia coli DH10B. The deduced 266-amino-acid protein was an Ambler class B -lactamase, with amino acid identities of 32% with B-II from Bacillus cereus; 31% with IMP-1 from several gram-negative rods in Japan, including P. aeruginosa; 27% with CcrA from Bacteroides fragilis; 24% with BlaB from Chryseobacterium meningosepticum; 24% with IND-1 from Chryseobacterium indologenes; 21% with CphA-1 from Aeromonas hydrophila; and 11% with L-1 from Stenotrophomonas maltophilia. It was most closely related to VIM-1 -lactamase recently reported from Italian P. aeruginosa clinical isolates (90% amino acid identity). Purified VIM-2 -lactamase had a pI of 5.6, a relative molecular mass of 29.7 kDa, and a broad substrate hydrolysis range, including penicillins, cephalosporins, cephamycins, oxacephamycins, and carbapenems, but not monobactams. As a metallo--lactamase, its activity was zinc dependent and inhibited by EDTA (50% inhibitory concentration, 50 M). VIM-2 conferred a resistance pattern to -lactams in E. coli DH10B that paralleled its in vitro hydrolytic properties, except for susceptibility to ureidopenicillins, carbapenems, and cefepime. bla VIM-2 was located on a ca. 45-kb plasmid that in addition conferred resistance to sulfamides and that was not self-transmissible either from P. aeruginosa to E. coli or from E. coli to E. coli. bla VIM-2 was the only gene cassette located within the variable region of a novel class 1 integron, In56, that was weakly related to the bla VIM-1 -containing integron. VIM-2 is the second carbapenem-hydrolyzing metalloenzyme characterized from a P. aeruginosa isolate outside Japan.
Estuaries serve as nursery grounds for many marine fish species. However increasing human activities within estuaries and surrounding areas lead to significant habitat loss for the juveniles and decrease the quality of the remaining habitats. This study is based on the data of 470 beam trawls from surveys that were conducted in 13 French estuaries for the purpose of the European Water Framework Directive. It aimed at testing the effects of anthropogenic disturbances on the nursery function of estuaries. With a multispecific approach based on ecological guilds, two fish metrics, abundance and species richness of Marine Juvenile migrant fishes, were used as proxies for the estuarine nursery function. Indices of heavy metal and organic contaminations were used to estimate anthropogenic disturbances impacting these estuaries. Fish metrics were described with statistical models that took into account: (a) sampling protocol, (b) estuarine features and (c) contamination. The results of these models showed that the fish metrics highly depend on the sampling protocol, and especially type of gear, depth and salinity, which highlights the necessity of considering such metrics at the sampling (trawl haul) scale. Densities and species richness of Marine Juvenile fishes appeared to be strongly and negatively correlated to contamination indices. These results are consistent with the hypothesis that human disturbances impact the nursery function of estuaries. Finally, the densities of Marine Juvenile migrant species appeared as a potential robust and useful fish indicator for the assessment of the ecological status of estuaries within the Water Framework Directive.
Estuarine fish assemblages are subject to a great environmental variability that largely depends on both upstream fluvial and downstream marine influences. From this ecohydrological view, our study introduces a macroecological approach aiming to identify the main environmental factors that structure fish assemblages among European tidal estuaries.The present paper focuses on the influence of large scale environmental gradients on estuarine fish species richness. The environment of 135 North-eastern Atlantic estuaries from Portugal to Scotland was characterized by various descriptors especially related to hydromorphology.Major environmental trends among estuaries were underlined using multivariate techniques and cluster analyses applied to abiotic data. In particular, an integrative system size covariate was derived from a principal component analysis. Factors explaining patterns of species richness at different scales from local habitat to regional features were highlighted. Based on generalised linear models, the estuarine system size, and more particularly the entrance width, and also the continental shelf width were identified as the best explanatory variables of estuarine fish species richness at a large scale. Our approach provides a standardized method to estimate the relationship between fish assemblages and environmental factors. This constitutes a first step in assessing estuarine ecological status and studying the effects of additional factors such as anthropogenic disturbances.
We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.