The opportunistic fungal pathogen Candida albicans is normally commensal, residing in the mucosa of most healthy individuals. In susceptible hosts, its filamentous hyphal form can invade epithelial layers leading to superficial or severe systemic infection. Although invasion is mainly intracellular, it causes no apparent damage to host cells at early stages of infection. Here, we investigate C. albicans invasion in vitro using live-cell imaging and the damage-sensitive reporter galectin-3. Quantitative single cell analysis shows that invasion can result in host membrane breaching at different stages and host cell death, or in traversal of host cells without membrane breaching. Membrane labelling and three-dimensional ‘volume’ electron microscopy reveal that hyphae can traverse several host cells within trans-cellular tunnels that are progressively remodelled and may undergo ‘inflations’ linked to host glycogen stores. Thus, C. albicans early invasion of epithelial tissues can lead to either host membrane breaching or trans-cellular tunnelling.
The opportunistic fungal pathogen Candida albicans is normally commensal, residing in the mucosa of most healthy individuals. In susceptible hosts, its filamentous hyphal form can invade epithelial layers leading to superficial or severe systemic infection. Invasion is mainly intracellular, though it causes no apparent damage to host cells. We investigated the invasive lifestyle of Candida albicansin vitro using live-cell imaging and the damage-sensitive reporter galectin-3. Quantitative single cell analysis showed that invasion can result in host membrane breaching at different stages of invasion and cell death, or in traversal of host cells without membrane breaching. Membrane labelling and three-dimensional volume electron microscopy revealed that hyphae can traverse several host cells within trans-cellular tunnels that are progressively remodelled and may undergo inflations linked to host glycogen stores, possibly during nutrient uptake. Thus, Candida albicans invade epithelial tissues by either inflicting or avoiding host damage, the latter facilitated by trans-cellular tunnelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.