Recent technological advances in the field of genomics offer conservation managers and practitioners new tools to explore for conservation applications. Many of these tools are well developed and used by other life science fields, while others are still in development. Considering these technological possibilities, choosing the right tool(s) from the toolbox is crucial and can pose a challenging task. With this in mind, we strive to inspire, inform and illuminate managers and practitioners on how conservation efforts can benefit from the current genomic and biotechnological revolution. With inspirational case studies we show how new technologies can help resolve some of the main conservation challenges, while also informing how implementable the different technologies are. We here focus specifically on small population management, highlight the potential for genetic rescue, and discuss the opportunities in the field of gene editing to help with adaptation to changing environments. In addition, we delineate potential applications of gene drives for controlling invasive species. We illuminate that the genomic toolbox offers added benefit to conservation efforts, but also comes with limitations for the use of these novel emerging techniques.
Progress in gene drive research has engendered a lively discussion about community engagement and the ethical standards the work hinges on. While there is broad agreement regarding ethical principles and established best practices for conducting clinical public health research, projects developing area-wide vector control technologies and initiating ambitious engagement strategies raise specific questions: who to engage, when to engage, and how? When responding to these fundamental questions, with few best practices available for guidance, projects need to reflect on and articulate the ethical principles that motivate and justify their approach. Target Malaria is a not-for-profit research consortium that aims to develop and share malaria control and elimination technology. The consortium is currently investigating the potential of a genetic technique called gene drive to control populations of malaria vectoring mosquito species Anopheles gambiae. Due to the potentially broad geographical, environmental impact of gene drive technology, Target Malaria has committed to a robust form of tailored engagement with the local communities in Burkina Faso, Mali, and Uganda, where research activities are currently taking place. This paper presents the principles guiding Target Malaria’s engagement strategy. Herein the authors (i) articulate the principles; (ii) explain the rationale for selecting them; (iii) share early lessons about the application of the principles. Since gene drive technology is an emerging technology, with few best practices available for guidance, the authors hope by sharing these lessons, to add to the growing literature regarding engagement strategies and practices for area-wide vector control, and more specifically, for gene drive research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.