Benzofuran derivatives are of great interest in medicinal chemistry and have drawn considerable attention due to their diverse pharmacological profiles including anticancer activity. Similarly, chalcones, which are common substructures of numerous natural products belonging to the flavonoid class, feature strong anticancer properties. A novel series of chalcones, 3-aryl-1-(5-bromo-1-benzofuran-2-yl)-2-propanones propenones (3a–f), were designed, synthesized, and characterized.In vitroantitumor activities of the newly synthesized (3a–f) and previously synthesized (3g–j) chalcone compounds were determined by using human breast (MCF-7) and prostate (PC-3) cancer cell lines. Antitumor properties of all compounds were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell viability assay for the tested chalcone compounds was performed and thelogIC50values of the compounds were calculated after 24-hour treatment. Our results indicate that the tested chalcone compounds show antitumor activity against MCF-7 and PC-3 cell lines (p<0.05).
A new liquid crystalline oligomer OLC was synthesized from its monomer having Schiff-base type mesogenic group MLC via free radical polymerization. The chemical structures of all compounds were confirmed using UV, FTIR, 1 H NMR, 13 C NMR and MS spectroscopy. Schiff-base type thermotropic system based on side chain oligomer containing long aliphatic branching was studied to determine the change in mesophase behaviour of the Schiff-base type mesogenic groups. A combination of differantial scanning calorimetry (DSC) and polarize optical microscopy (POM) demonstrated that the oligomer behaves similar to its monomer and both of them exhibit enantiotropic SmC and monotropic SmX mesophases. The oligomerization of the liquid crystal monomer gives rise to decreased transition temperatures whereas it has no influence on the type and stability of the mesophase formed. Namely, simply through oligomerization, we can greatly vary transition temperatures of the mesogenic groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.