BACKGROUND-Safe, accurate methods permitting simultaneous and/or repeated measurement of red blood cell (RBC) survival (RCS) are important to investigate pathophysiology and therapy of anemia. Methods using chromium 51 ( 51 Cr) -labeled RBCs are unacceptable for infants, children, and pregnant women. We report RCS measured in vivo using RBCs labeled with several densities of biotin (BioRBCs).
Glc7, the yeast protein phosphatase 1, is a component of the cleavage and polyadenylation factor (CPF). Here we show that downregulation of Glc7, or its dissociation from CPF in the absence of CPF subunits Ref2 or Swd2, results in similar snoRNA termination defects. Overexpressing a C-terminal fragment of Sen1, a superfamily I helicase required for snoRNA termination, suppresses the growth and termination defects associated with loss of Swd2 or Ref2, but not Glc7. Suppression by Sen1 requires nuclear localization and direct interaction with Glc7, which can dephosphorylate Sen1 in vitro. The suppressing fragment, and in a similar manner full-length Sen1, copurifies with the snoRNA termination factors Nrd1 and Nab3, suggesting loss of Glc7 from CPF can be compensated by recruiting Glc7 to Nrd1-Nab3 through Sen1. Swd2 is also a subunit of the Set1c histone H3K4 methyltransferase complex and is required for its stability and optimal methyltransferase activity.
BackgroundHematopoiesis is a complex developmental process controlled by a large number of factors that regulate stem cell renewal, lineage commitment and differentiation. Secreted proteins, including the hematopoietic growth factors, play critical roles in these processes and have important biological and clinical significance. We have employed representational difference analysis to identify genes that are differentially expressed during experimentally induced myeloid differentiation in the murine EML hematopoietic stem cell line.ResultsOne identified clone encoded a previously unidentified protein of 541 amino acids that contains an amino terminal signal sequence but no other characterized domains. This protein is a member of family of related proteins that has been named family with sequence similarity 20 (FAM20) with three members (FAM20A, FAM20B and FAM20C) in mammals. Evolutionary comparisons revealed the existence of a single FAM20 gene in the simple vertebrate Ciona intestinalis and the invertebrate worm Caenorhabditis elegans and two genes in two insect species, Drosophila melanogaster and Anopheles gambiae. Six FAM20 family members were identified in the genome of the pufferfish, Fugu rubripes and five members in the zebrafish, Danio rerio. The mouse Fam20a protein was ectopically expressed in a mammalian cell line and found to be a bona fide secreted protein and efficient secretion was dependent on the integrity of the signal sequence. Expression analysis revealed that the Fam20a gene was indeed differentially expressed during hematopoietic differentiation and that the other two family members (Fam20b and Fam20c) were also expressed during hematcpoiesis but that their mRNA levels did not vary significantly. Likewise FAM20A was expressed in more limited set of human tissues than the other two family members.ConclusionsThe FAM20 family represents a new family of secreted proteins with potential functions in regulating differentiation and function of hematopoietic and other tissues. The Fam20a mRNA was only expressed during early stages of hematopoietic development and may play a role in lineage commitment or proliferation. The expansion in gene number in different species suggests that the family has evolved as a result of several gene duplication events that have occurred in both vertebrates and invertebrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.