Protein phosphorylation is a key post-translational modification (PTM) in many biological processes and is associated to human diseases such as cancer and metabolic disorders. The accurate identification, annotation and functional analysis of phosphosites is therefore crucial to understand their various roles. Phosphosites (P-sites) are mainly analysed through phosphoproteomics, which has led to increasing amounts of publicly available phosphoproteomics data. Several resources have been built around the resulting phosphosite information, but these are usually restricted to protein sequence and basic site metadata. What is often missing from these resources, however, is context, including protein structure mapping, experimental provenance information, and biophysical predictions. We therefore developed Scop3P: a comprehensive database of human phosphosites within their full context. Scop3P integrates sequences (UniProtKB/Swiss-Prot), structures (PDB), and uniformly reprocessed phosphoproteomics data (PRIDE) to annotate all known human phosphosites. Furthermore, these sites are put into biophysical context by annotating each phosphoprotein with perresidue structural propensity, solvent accessibility, disordered probability, and early folding information.Scop3P, available at https://iomics.ugent.be/scop3p, presents a unique resource for visualization and analysis of phosphosites, and for understanding of phosphosite structure-function relationships.
A complete knowledge of the proteome can only be attained by determining the associations between proteins, along with the nature of these associations (e.g. physical contact in protein–protein interactions, participation in complex formation or different roles in the same pathway). Despite extensive efforts in elucidating direct protein interactions, our knowledge on the complete spectrum of protein associations remains limited. We therefore developed a new approach that detects protein associations from identifications obtained after re-processing of large-scale, public mass spectrometry-based proteomics data. Our approach infers protein association based on the co-occurrence of proteins across many different proteomics experiments, and provides information that is almost completely complementary to traditional direct protein interaction studies. We here present a web interface to query and explore the associations derived from this method, called the online Tabloid Proteome. The online Tabloid Proteome also integrates biological knowledge from several existing resources to annotate our derived protein associations. The online Tabloid Proteome is freely available through a user-friendly web interface, which provides intuitive navigation and data exploration options for the user at http://iomics.ugent.be/tabloidproteome.
While transcriptome- and proteome-wide technologies to assess processes in protein biogenesis are now widely available, we still lack global approaches to assay post-ribosomal biogenesis events, in particular those occurring in the eukaryotic secretory system. We here develop a method, SECRiFY, to simultaneously assess the secretability of >105 protein fragments by two yeast species, S. cerevisiae and P. pastoris, using custom fragment libraries, surface display and a sequencing-based readout. Screening human proteome fragments with a median size of 50–100 amino acids, we generate datasets that enable datamining into protein features underlying secretability, revealing a striking role for intrinsic disorder and chain flexibility. The SECRiFY methodology generates sufficient amounts of annotated data for advanced machine learning methods to deduce secretability patterns. The finding that secretability is indeed a learnable feature of protein sequences provides a solid base for application-focused studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.