When tracking moving visual stimuli, primates orient their visual axis by combining two kinds of eye movements, smooth pursuit and saccades, that have very different dynamics. Yet, the mechanisms that govern the decision to switch from one type of eye movement to the other are still poorly understood, even though they could bring a significant contribution to the understanding of how the CNS combines different kinds of control strategies to achieve a common motor and sensory goal. In this study, we investigated the oculomotor responses to a large range of different combinations of position error and velocity error during visual tracking of moving stimuli in humans. We found that the oculomotor system uses a prediction of the time at which the eye trajectory will cross the target, defined as the "eye crossing time" (T(XE)). The eye crossing time, which depends on both position error and velocity error, is the criterion used to switch between smooth and saccadic pursuit, i.e., to trigger catch-up saccades. On average, for T(XE) between 40 and 180 ms, no saccade is triggered and target tracking remains purely smooth. Conversely, when T(XE) becomes smaller than 40 ms or larger than 180 ms, a saccade is triggered after a short latency (around 125 ms).
In view of all the reported evidence by electromyography in the 1970s, by histology in the 1980s, and by cerebral imagery since the 2000s, Duane retraction syndrome (DRS) has been described as the consequence of a congenital anomaly of the 6th cranial nerve nuclei with aberrant innervations by supply from the 3rd cranial nerve. Both genetic and environmental factors are likely to play a role when the cranial nerves and ocular muscles are developing between the 4th and the 8th week of gestation. New data from eye movement recordings contributed to better understanding the binocular control of saccades. Modeling of saccades in DRS seems promising for the quantification of the innervational deficit and the mechanical properties of the eye plant. The usual clinical classification of DRS needs to be updated in order to match more accurately the underlying dysinnervation of the extra ocular muscles and to illustrate the continuum that exists between the various forms. This review aims to summarize the major findings about DRS and to guide the clinician in the surgical management of this particular form of strabismus.
PURPOSE. Sweep visual evoked potentials (sVEPs) provide an implicit, objective, and sensitive evaluation of low-level visual functions such as visual acuity and contrast sensitivity. For practical and traditional reasons, sVEPs in ophthalmologic examinations have usually been recorded over a single or a limited number of electrodes over the medial occipital region. Here we examined whether a higher density of recording electrodes improves the estimation of individual low-level visual thresholds with sVEPS, and to which extent such testing could be streamlined for clinical application. METHODS.To this end, we tested contrast sensitivity and visual acuity in 26 healthy adult volunteers with a 68-electrode electroencephalogram (EEG) system. RESULTS.While the most sensitive electrophysiologic response was found at the traditional medial occipital electrode Oz in a small majority of individuals, it was found at neighboring electrodes for the remaining participants. At the group level, lower spatial frequencies were also associated with right lateralized responses. More generally, visual function was evaluated more sensitively based on EEG recorded at the most sensitive electrode defined individually for each participant. Our data suggest that recording over seven posterior electrodes while limiting the testing session to less than 15 minutes ensures a sensitive and consistent estimation of acuity and contrast sensitivity threshold estimates in every individual.CONCLUSIONS. The present study shows that sampling from a larger number of posterior scalp electrodes is relevant to optimize visual function assessment and could be achieved efficiently in the time-constrained clinical setting.
The prediction of the consequences of our own actions through internal models is an essential component of motor control. Previous studies showed improvement of anticipatory behaviors with age for grasping, drawing, and postural control. Since these actions require visual and proprioceptive feedback, these improvements might reflect both the development of internal models and the feedback control. In contrast, visual tracking of a temporarily invisible target gives specific markers of prediction and internal models for eye movements. Therefore, we recorded eye movements in 50 children (aged 5-19 yr) and in 10 adults, who were asked to pursue a visual target that is temporarily blanked. Results show that the youngest children (5-7 yr) have a general oculomotor behavior in this task, qualitatively similar to the one observed in adults. However, the overall performance of older subjects in terms of accuracy at target reappearance and variability in their behavior was much better than the youngest children. This late maturation of predictive mechanisms with age was reflected into the development of the accuracy of the internal models governing the synergy between the saccadic and pursuit systems with age. Altogether, we hypothesize that the maturation of the interaction between smooth pursuit and saccades that relies on internal models of the eye and target displacement is related to the continuous maturation of the cerebellum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.