Precursor T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogenous hematologic malignancy resulting from accumulation of molecular lesions in a multistep process. Although survival rates have improved considerably, event free survival for patients with T-ALL are generally inferior compared to B-cell ALL. Genetic alterations are important determinants of responsiveness to therapy and serve as targets for molecularly tailored therapies. More than 75 chimeric fusion genes have been reported in T-ALL, the majority of which encode factors involved in transcriptional regulation, while only a smaller percentage codes for tyrosine kinases. We report a case of relapsed T-ALL, despite low risk stratification at the time of diagnosis, harboring a novel fusion protein SPTAN1-ABL1. Primary bone marrow specimen collected at diagnosis was transplanted in NSG-B2m mice and propagated as a patient-derived xenograft (PDX) line. For transcriptomic characterization, RNA isolated from primary and PDX samples was subjected to error-corrected targeted next-generation sequencing using ArcherDX FusionPlex HemeV2 kit. Bioinformatics analysis identified the novel SPTAN1-ABL1 gene fusion in which exon 2 of SPTAN1 was fused with exon 4 of ABL1. This fusion was confirmed by Sanger sequencing. Translation of the fusion product sequence showed in-frame fusion leading to the generation of a chimeric protein containing N-terminal SPTAN1 and C-terminal ABL1 with intact kinase domain. SPTAN1 encodes non-erythryocytic-1-spectrin-alpha protein, an actin-binding protein, with N-terminal domain possessing oligomerization activity. Because oligomerization of ABL1 promotes its kinase activity, it is possible that SPTAN1-ABL1 possesses constitutive kinase activity. The full-length SPTAN1-ABL1 fusion protein was cloned in a mammalian expression vector and expressed in BaF3 cells. SPTAN1-ABL1 fusion was detected at similar allelic frequencies in primary and PDX samples indicating the concordance between the two. Furthermore, treatment of engrafted mice with dasatinib (Qd10, 5 mg/Kg, p.o.) significantly prolonged survival compared to untreated mice (n=5 each, P<0.005). Taken together, these data suggest the possibility that the presence of SPTAN1-ABL1 fusion gene may confer a higher risk disease thereby leading to early recurrence, similar to the treatment failures observed in B-ALL patients later found to harbor BCR-ABL1 fusion gene. This study also indicates a potential therapeutic role for tyrosine kinase inhibitors in the treatment of T-ALL patients with ABL1 fusion. Citation Format: Anilkumar Gopalakrisnapillai, Erin Crowgey, Demetria Ruhl, Darcy Hamill, Nitin Mahajan, Todd Druley, E. Anders Kolb, Sonali P. Barwe. Identification of a novel fusion protein SPTAN1-ABL1 in a child with T-cell acute lymphoblastic leukemia: Functional characterization and therapeutic implications [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr LB-322.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.