Posttransplant erythrocytosis (PTE) is defined as a persistently elevated hematocrit to a level greater than 51% after renal transplantation. It occurs in 10% to 15% of graft recipients and usually develops 8 to 24 months after engraftment. Spontaneous remission of established PTE is observed in one fourth of the patients within 2 years from onset, whereas in the remaining three fourths it persists for several years, only to remit after loss of renal function from rejection. Predisposing factors include male gender, retention of native kidneys, smoking, transplant renal artery stenosis, adequate erythropoiesis prior to transplantation, and rejection-free course with well-functioning renal graft. Just as in other forms of erythrocytosis, a substantial number (approximately 60%) of patients with PTE experience malaise, headache, plethora, lethargy, and dizziness. Thromboembolic events occur in 10% to 30% of the cases; 1% to 2% eventually die of associated complications. Posttransplant erythrocytosis results from the combined trophic effect of multiple and interrelated erythropoietic factors. Among them, endogenous erythropoietin appears to play the central role. Persistent erythropoietin secretion from the diseased and chronically ischemic native kidneys does not conform to the normal feedback regulation, thereby establishing a form of "tertiary hypererythropoietinemia." However, erythropoietin levels in most PTE patients still remain within the "normal range," indicating that erythrocytosis finally ensues by the contributory action of additional growth factors on erythroid progenitors, such as angiotensin II, androgens, and insulin-like growth factor 1 (IGF-1). Inactivation of the renin-angiotensin system (RAS) by an angiotensin-converting enzyme (ACE) inhibitor, or an angiotensin II type 1 AT1 receptor blocker represents the most effective, safe, and well-tolerated therapeutic modality.
To investigate the capacity of lupus autoAb to produce glomerular immune deposits (ID) and nephritis, 24 murine monoclonal (m) anti-DNA antibodies (Ab), derived from either MRL-lpr/lpr, SNF1 or NZB lupus-prone mice and selected based on properties shared with nephritogenic Ig, were administered i.p. (as hybridomas) and i.v. (as purified Ig) to normal mice; at least four mice/mAb were evaluated. Three general patterns of immune deposit formation (IDF) were observed: extracellular ID within glomeruli (+/- blood vessels, N = 8); intranuclear ID (N = 5); or minimal or no ID (N = 11). The four MRL m anti-DNA Ab that produced significant extracellular ID demonstrated different disease profiles including: (a) mesangial and subendothelial ID with anti-basement membrane staining, associated with proliferative glomerulonephritis, PMN infiltration, and proteinuria; (b) diffuse fine granular mesangial and extraglomerular vascular ID, associated with proliferative glomerulonephritis and proteinuria; (c) dense intramembranous ID and intraluminal ID, associated with capillary wall thickening, mesangial interposition and expansion, aneurysmal dilatation and intraluminal occlusion of glomerular capillary loops, and heavy proteinuria; and (d) mesangial and extraglomerular vascular ID, associated with mild segmental mesangial expansion, without proteinuria. These MRL mAb were derived from four different mice, and they had variable pIs and isotypes. They all cross reacted with multiple autoantigens (autoAg), however, their autoAg binding profiles were distinguishable. Among the SNF1 derived mAb, four produced histologically and clinically indistinguishable disease characterized by diffuse mesangial and capillary wall ID, associated with cellular proliferation/infiltration and proteinuria. Three of the four mAb were derived from the same mouse and were clonally related; they were: IgG2b with SWR allotype, relatively cationic, highly cross reactive with similar Ag binding patterns, idiotypically related and encoded by identical VH and nearly identical VL sequences. We conclude that both the capacity of lupus autoAb to form ID and the location of IDF are dependent on properties unique to individual Ig. The results also indicate that the Ag binding region of the autoAb is influential in this process, and they suggest that multiple Ab-Ag interactions contribute to IDF in individuals with lupus nephritis. Furthermore, these observations raise the possibility that the pathologic and clinical abnormalities resulting from these interactions are influenced by the location of IDF, and that the dominant interaction, in a given individual, may be highly influential in the phenotypic expression of nephritis.
In patients undergoing CABG, DEF i.v. infusion ameliorates oxygen free radical production and protects the myocardium against reperfusion injury. Patients with a lower EF seem to benefit more by DEF i.v. infusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.