We develop an equilibrium framework that relaxes the standard assumption that people have a correctly specified view of their environment. Each player is characterized by a (possibly misspecified) subjective model, which describes the set of feasible beliefs over payoff‐relevant consequences as a function of actions. We introduce the notion of a Berk–Nash equilibrium: Each player follows a strategy that is optimal given her belief, and her belief is restricted to be the best fit among the set of beliefs she considers possible. The notion of best fit is formalized in terms of minimizing the Kullback–Leibler divergence, which is endogenous and depends on the equilibrium strategy profile. Standard solution concepts such as Nash equilibrium and self‐confirming equilibrium constitute special cases where players have correctly specified models. We provide a learning foundation for Berk–Nash equilibrium by extending and combining results from the statistics literature on misspecified learning and the economics literature on learning in games.
This paper considers semiparametric efficient estimation of conditional moment models with possibly nonsmooth residuals in unknown parametric components (θ) and unknown functions (h) of endogenous variables. We show that: (1) the penalized sieve minimum distance (PSMD) estima-tor (ˆ θ, ˆ h) can simultaneously achieve root-n asymptotic normality ofˆθofˆofˆθ and nonparametric optimal convergence rate ofˆhofˆ ofˆh, allowing for noncompact function parameter spaces; (2) a simple weighted bootstrap procedure consistently estimates the limiting distribution of the PSMDˆθPSMDˆPSMDˆθ; (3) the semi-parametric efficiency bound formula of Ai and Chen (2003) remains valid for conditional models with nonsmooth residuals, and the optimally weighted PSMD estimator achieves the bound; (4) the centered, profiled optimally weighted PSMD criterion is asymptotically chi-square distributed. We illustrate our theories using a partially linear quantile instrumental variables (IV) regression, a Monte Carlo study, and an empirical estimation of the shape-invariant quantile IV Engel curves. JEL Classification: C14; C22
For semi/nonparametric conditional moment models containing unknown parametric components (θ) and unknown functions of endogenous variables (h), Newey and Powell (2003) and Ai and Chen (2003) propose sieve minimum distance (SMD) estimation of (θ, h) and derive the large sample properties. This paper greatly extends their results by establishing the followings: (1) The penalized SMD (PSMD) estimator (θ,ĥ) can simultaneously achieve root-n asymptotic normality ofθ and nonparametric optimal convergence rate ofĥ, allowing for models with possibly nonsmooth residuals and/or noncompact infinite dimensional parameter spaces. (2) A simple weighted bootstrap procedure can consistently estimate the limiting distribution of the PSMDθ. (3) The semiparametric efficiency bound results of Ai and Chen (2003) remain valid for conditional models with nonsmooth residuals, and the optimally weighted PSMD estimator achieves the bounds. (4) The profiled optimally weighted PSMD criterion is asymptotically Chi-square distributed, which implies an alternative consistent estimation of confidence region of the efficient PSMD estimator of θ. All the theoretical results are stated in terms of any consistent nonparametric estimator of conditional mean functions. We illustrate our general theories using a partially linear quantile instrumental variables regression, a Monte Carlo study, and an empirical estimation of the shape-invariant quantile Engel curves with endogenous total expenditure. JEL classification: C14; C22
This paper studies nonparametric estimation of conditional moment models in which the generalized residual functions can be nonsmooth in the unknown functions of endogenous variables. This is a nonparametric nonlinear instrumental variables (IV) problem. We propose a class of penalized sieve minimum distance (PSMD) estimators which are minimizers of a penalized empirical minimum distance criterion over a collection of sieve spaces that are dense in the infinite dimensional function parameter space. Some of the PSMD procedures use slowly growing finite dimensional sieves with flexible penalties or without any penalty; some use large dimensional sieves with lower semicompact and/or convex penalties. We establish their consistency and the convergence rates in Banach space norms (such as a sup-norm or a root mean squared norm), allowing for possibly non-compact infinite dimensional parameter spaces. For both mildly and severely ill-posed nonlinear inverse problems, our convergence rates in Hilbert space norms (such as a root mean squared norm) achieve the known minimax optimal rate for the nonparametric mean IV regression. We illustrate the theory with a nonparametric additive quantile IV regression. We present a simulation study and an empirical application of estimating nonparametric quantile IV Engel curves.
This paper considers inference on functionals of semi/nonparametric conditional moment restrictions with possibly nonsmooth generalized residuals, which include all of the (nonlinear) nonparametric instrumental variables (IV) as special cases. These models are often ill-posed and hence it is difficult to verify whether a (possibly nonlinear) functional is root-n estimable or not. We provide computationally simple, unified inference procedures that are asymptotically valid regardless of whether a functional is root-n estimable or not. We establish the following new useful results: (1) the asymptotic normality of a plug-in penalized sieve minimum distance (PSMD) estimator of a (possibly nonlinear) functional; (2) the consistency of simple sieve variance estimators for the plug-in PSMD estimator, and hence the asymptotic chi-square distribution of the sieve Wald statistic; (3) the asymptotic chi-square distribution of an optimally weighted sieve quasi likelihood ratio (QLR) test under the null hypothesis; (4) the asymptotic tight distribution of a non-optimally weighted sieve QLR statistic under the null; (5) the consistency of generalized residual bootstrap sieve Wald and QLR tests; (6) local power properties of sieve Wald and QLR tests and of their bootstrap versions; (7) asymptotic properties of sieve Wald and SQLR for functionals of increasing dimension. Simulation studies and an empirical illustration of a nonparametric quantile IV regression are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.