Current therapeutic strategies for Alzheimer's disease (AD) mainly focus on inhibition of aberrant amyloid-β peptide (Aβ) aggregation. However, these strategies cannot repair the side symptoms (e.g., high neuronal oxidative stress) triggered by Aβ accumulation and thus show limited effects on suppressing Aβ-induced neuronal apoptosis. Herein, we develop a stepwise metal−phenolic coordination approach for the rational design of a neuroprotection enhancer, K8@Fe−Rh/Pda NPs, in which rhein and polydopamine are effectively coupled to enhance the treatment of AD in APPswe/PSEN1dE9 transgenic (APP/PS1) mice. We discover that the polydopamine inhibits the aggregation of Aβ oligomers, and rhein helps repair damage to neurons triggered by Aβ aggregation. Based on molecular docking, we demonstrate that the polydopamine has a strong interaction with Aβ monomers/ fibrils through its multiple recognition sites (e.g., catechol groups, imine groups, and indolic/catecholic π-systems), thereby reducing Aβ burden. Further investigation of the antioxidant mechanisms suggests that K8@Fe−Rh/Pda NPs promote the mitochondrial biogenesis via activating the sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor gamma coactivator 1-alpha pathway. This finally inhibits neuronal apoptosis. Moreover, an intravenous injection of these nanoparticles potently improves the cognitive function in APP/PS1 mice without adverse effects. Overall, our work provides a promising approach to develop advanced nanomaterials for multi-target treatment of AD.
Mitochondrial oxidative stress plays an important role in the pathogenesis of Alzheimer’s disease (AD). Recently, antioxidant therapy has been considered an effective strategy for the treatment of AD. Our previous work discovered that rhein relieved mitochondrial oxidative stress in β-amyloid (Aβ) oligomer-induced primary neurons by improving the sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor gamma coactivator 1-alpha- (PGC-1α-) regulated mitochondrial biogenesis. While encouraging results have been provided, mechanisms underlying the beneficial effect of rhein on AD are yet to be elucidated in vivo. In this study, we evaluated the therapeutic effect of rhein on an APP/PS1 transgenic (APP/PS1) mouse model of AD and explored its antioxidant mechanisms. As a result, rhein significantly reduced Aβ burden and neuroinflammation and eventually ameliorated cognitive impairment in APP/PS1 mice. Moreover, rhein reversed oxidative stress in the brain of APP/PS1 mice and protected neurons from oxidative stress-associated apoptosis. Further study revealed that rhein promoted mitochondrial biogenesis against oxidative stress by upregulating SIRT1 and its downstream PGC-1α as well as nuclear respiratory factor 1. Improved mitochondrial biogenesis not only increased the activity of superoxide dismutase to scavenge excess reactive oxygen species (ROS) but also repaired mitochondria by mitochondrial fusion to inhibit the production of ROS from the electron transport chain. Notably, the exposure of rhein in the brain analyzed by tissue distribution study indicated that rhein could permeate into the brain to exert its therapeutic effects. In conclusion, these findings drive rhein to serve as a promising therapeutic antioxidant for the treatment of AD. Our research highlights the therapeutic efficacy for AD through regulating mitochondrial biogenesis via the SIRT1/PGC-1α pathway.
The present study was undertaken with the objective of finding out the comparative analgesic effect of Ligusticum chuanxiong (LC) pieces decoction, LC formula granule decoction, liquored LC pieces decoction and liquored LC formula granule decoction. The analgesic effects were analyzed using the hot plate and acetic-induced writhing test in mice, and antidysmenorrheic effect was observed with primary dysmenorrhea model. The results showed that four kinds of LC decoction had definite effect in delaying incubation period and decreasing the writhing frequency within 30 min. They also effectively relieved dysmenorrhea. Moreover, liquored LC had better analgesic effect than crude LC in four decoctions.
Drugs targeting intestinal bacteria have shown great efficacy for alleviating symptoms of Alzheimer’s disease (AD), and microbial metabolites are important messengers. Our previous work indicated that Rheum tanguticum effectively improved cognitive function and reshaped the gut microbial homeostasis in AD rats. However, its therapeutic mechanisms remain unclear. Herein, this study aimed to elaborate the mechanisms of rhubarb for the treatment of AD by identifying effective metabolites associated with rhubarb-responsive bacteria. The results found that rhubarb reduced hippocampal inflammation and neuronal damage in APP/PS1 transgenic (Tg) mice. 16S rRNA sequencing and metabolomic analysis revealed that gut microbiota and their metabolism in Tg mice were disturbed in an age-dependent manner. Rhubarb-responsive bacteria were further identified by real-time polymerase chain reaction (RT-PCR) sequencing. Four different metabolites reversed by rhubarb were found in the position of the important nodes on rhubarb-responsive bacteria and their corresponding metabolites combined with pathological indicators co-network. Furthermore, in vitro experiments demonstrated o-tyrosine not only inhibited the viabilities of primary neurons as well as BV-2 cells, but also increased the levels of intracellular reactive oxygen species and nitric oxide. In the end, the results suggest that rhubarb ameliorates cognitive impairment in Tg mice through decreasing the abundance of o-tyrosine in the gut owing to the regulation of rhubarb-responsive bacteria. Our study provides a promising strategy for elaborating therapeutic mechanisms of bacteria-targeted drugs for AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.