With the development of information technology, Internet-of-Things (IoT) and low-altitude remote-sensing technology represented by Unmanned Aerial Vehicles (UAVs) are widely used in environmental monitoring fields. In agricultural modernization, IoT and UAV can monitor the incidence of crop diseases and pests from the ground micro and air macro perspectives, respectively. IoT technology can collect real-time weather parameters of the crop growth by means of numerous inexpensive sensor nodes. While depending on spectral camera technology, UAVs can capture the images of farmland, and these images can be utilize for analyzing the occurrence of pests and diseases of crops. In this work, we attempt to design an agriculture framework for providing profound insights into the specific relationship between the occurrence of pests/diseases and weather parameters. Firstly, considering that most farms are usually located in remote areas and far away from infrastructure, making it hard to deploy agricultural IoT devices due to limited energy supplement, a sun tracker device is designed to adjust the angle automatically between the solar panel and the sunlight for improving the energy-harvesting rate. Secondly, for resolving the problem of short flight time of UAV, a flight mode is introduced to ensure the maximum utilization of wind force and prolong the fight time. Thirdly, the images captured by UAV are transmitted to the cloud data center for analyzing the degree of damage of pests and diseases based on spectrum analysis technology. Finally, the agriculture framework is deployed in the Yangtze River Zone of China and the results demonstrate that wheat is susceptible to disease when the temperature is between 14 • C and 16 • C, and high rainfall decreases the spread of wheat powdery mildew.
For rechargeable wireless sensor networks, limited energy storage capacity, dynamic energy supply, low and dynamic duty cycles cause that it is unpractical to maintain a fixed routing path for packets delivery permanently from a source to destination in a distributed scenario. Therefore, before data delivery, a sensor has to update its waking schedule continuously and share them to its neighbors, which lead to high energy expenditure for reestablishing path links frequently and low efficiency of energy utilization for collecting packets. In this work, we propose the maximum data generation rate routing protocol based on data flow controlling technology. For a sensor, it does not share its waking schedule to its neighbors and cache any waking schedules of other sensors. Hence, the energy consumption for time synchronization, location information and waking schedule shared will be reduced significantly. The saving energy can be used for improving data collection rate. Simulation shows our scheme is efficient to improve packets generation rate in rechargeable wireless sensor networks.
In Rechargeable Wireless Sensor Networks (R-WSNs), in order to achieve the maximum data collection rate it is critical that sensors operate in very low duty cycles because of the sporadic availability of energy. A sensor has to stay in a dormant state in most of the time in order to recharge the battery and use the energy prudently. In addition, a sensor cannot always conserve energy if a network is able to harvest excessive energy from the environment due to its limited storage capacity. Therefore, energy exploitation and energy saving have to be traded off depending on distinct application scenarios. Since higher data collection rate or maximum data collection rate is the ultimate objective for sensor deployment, surplus energy of a node can be utilized for strengthening packet delivery efficiency and improving the data generating rate in R-WSNs. In this work, we propose an algorithm based on data aggregation to compute an upper data generation rate by maximizing it as an optimization problem for a network, which is formulated as a linear programming problem. Subsequently, a dual problem by introducing Lagrange multipliers is constructed, and subgradient algorithms are used to solve it in a distributed manner. At the same time, a topology controlling scheme is adopted for improving the network’s performance. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient at maximizing the data collection rate in rechargeable wireless sensor networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.