Drug potency influences PI3K/MEK inhibitor-induced target inhibition, adaptive kinome reprogramming, efficacy, and synergy. Our findings suggest that combination therapies with highly potent, brain-penetrant kinase inhibitors will be required to improve patient outcomes.
BackgroundGlioblastoma (GBM) is the most common adult primary brain tumor. Multimodal treatment is empiric and prognosis remains poor. Recurrent PIK3CA missense mutations (PIK3CAmut) in GBM are restricted to three functional domains: adaptor binding (ABD), helical, and kinase. Defining how these mutations influence gliomagenesis and response to kinase inhibitors may aid in the clinical development of novel targeted therapies in biomarker-stratified patients.MethodsWe used normal human astrocytes immortalized via expression of hTERT, E6, and E7 (NHA). We selected two PIK3CAmut from each of 3 mutated domains and induced their expression in NHA with (NHARAS) and without mutant RAS using lentiviral vectors. We then examined the role of PIK3CAmut in gliomagenesis in vitro and in mice, as well as response to targeted PI3K (PI3Ki) and MEK (MEKi) inhibitors in vitro.ResultsPIK3CAmut, particularly helical and kinase domain mutations, potentiated proximal PI3K signaling and migration of NHA and NHARAS
in vitro. Only kinase domain mutations promoted NHA colony formation, but both helical and kinase domain mutations promoted NHARAS tumorigenesis in vivo. PIK3CAmut status had minimal effects on PI3Ki and MEKi efficacy. However, PI3Ki/MEKi synergism was pronounced in NHA and NHARAS harboring ABD or helical mutations.ConclusionPIK3CAmut promoted differential gliomagenesis based on the mutated domain. While PIK3CAmut did not influence sensitivity to single agent PI3Ki, they did alter PI3Ki/MEKi synergism. Taken together, our results demonstrate that a subset of PIK3CAmut promote tumorigenesis and suggest that patients with helical domain mutations may be most sensitive to dual PI3Ki/MEKi treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.