Directed graphs have long been used to gain understanding of the structure of semigroups, and recently the structure of directed graph semigroups has been investigated resulting in a characterization theorem and an analog of Fruct's Theorem. We investigate four inverse semigroups defined over undirected graphs constructed from the notions of subgraph, vertex induced subgraph, rooted tree induced subgraph, and rooted path induced subgraph. We characterize the structure of the semilattice of idempotents and lattice of ideals of these four inverse semigroups. Finally, we prove a characterization theorem that states that every graph has a unique associated inverse semigroup up to isomorphism.
In the standard Category of Graphs, the graphs allow only one edge to be incident to any two vertices, not necessarily distinct, and the graph morphisms must map edges to edges and vertices to vertices while preserving incidence. We refer to these graph morphisms as Strict Morphisms. We relax the condition on the graphs allowing any number of edges to be incident to any two vertices, as well as relaxing the condition on graph morphisms by allowing edges to be mapped to vertices, provided that incidence is still preserved. We call this broader graph category The Category of Conceptual Graphs, and define four other graph categories created by combinations of restrictions of the graph morphisms as well as restrictions on the allowed graphs.We investigate which Lawvere axioms for the category of Sets and Functions apply to each of these Categories of Graphs, as well as the other categorial constructions of free objects, projective objects, generators, and their categorial duals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.