We present performance results for dense linear algebra using recent NVIDIA GPUs. Our matrix-matrix multiply routine (GEMM) runs up to 60% faster than the vendor's implementation and approaches the peak of hardware capabilities. Our LU, QR and Cholesky factorizations achieve up to 80-90% of the peak GEMM rate. Our parallel LU running on two GPUs achieves up to ~540 Gflop/s. These results are accomplished by challenging the accepted view of the GPU architecture and programming guidelines. We argue that modern GPUs should be viewed as multithreaded multicore vector units. We exploit blocking similarly to vector computers and heterogeneity of the system by computing both on GPU and CPU. This study includes detailed benchmarking of the GPU memory system that reveals sizes and latencies of caches and TLB. We present a couple of algorithmic optimizations aimed at increasing parallelism and regularity in the problem that provide us with slightly higher performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.