With an unprecedented challenge to combat COVID-19, the prediction of confirmed cases is very important to ensure medical aid and healthy living conditions. In order to predict confirmed cases, the current study uses a dataset prepared by the White House Office of Science and Technology Policy which brought together companies and research to address questions concerning COVID-19. The importance of this was to identify factors that seem to affect the transmission rate of COVID-19. The focus of the current research, however, is to predict global cases of COVID-19. There have been many papers written about the prediction of confirmed cases and fatalities, but they failed to show promising results. Our research applies machine learning for predicting fatalities in the world using the COVID-19 Forecasting dataset from Kaggle. After trying several algorithms, our findings reveal that Logistic Regression, Decision Tree, KNeighbors, GaussianNB, and Random Forest algorithms provide the best predictions. Thus, the results show Random Forest as having the highest accuracy followed by Logistic Regression and Decision Tree. The results are promising opening up the door for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.