In this letter, a dual-band 8×8 MIMO antenna that operates in the sub-6 GHz spectrum for future 5G multiple-input multiple-output (MIMO) smartphone applications is presented. The design consists of a fully grounded plane with closely spaced orthogonal pairs of antennas placed symmetrically along the long edges and on the corners of the smartphone. The orthogonal pairs are connected by a 7.8 mm short neutral line for mutual coupling reduction at both bands. Each antenna element consists of a folded monopole with dimensions 17.85×5 mm 2 and can operate in 3100-3850 MHz for the low band and 4800-6000 MHz for the high band (|S11| <-10 dB). The fabricated antenna prototype is tested and offers good performance in terms of Envelope Correlation Coefficient (ECC), Mean Effective Gain (MEG), total efficiency and channel capacity. Finally, the user effects on the antenna and the Specific Absorption Rate (SAR) are also presented. Index Terms-Dual-band, mutual coupling, multiple input multiple output (MIMO), smartphone antenna, SAR.
The Terahertz (THz) band (0.3-3.0 THz), spans a great portion of the Radio Frequency (RF) spectrum that is mostly unoccupied and unregulated. It is a potential candidate for application in Sixth-Generation (6G) wireless networks, as it has the capabilities of satisfying the high data rate and capacity requirements of future wireless communication systems. Profound knowledge of the propagation channel is crucial in communication systems design, which nonetheless is still at its infancy, as channel modeling at THz frequencies has been mostly limited to characterizing fixed Point-to-Point (PtP) scenarios up to 300 GHz. Provided the technology matures enough and models adapt to the distinctive characteristics of the THz wave, future wireless communication systems will enable a plethora of new use cases and applications to be realized, in addition to delivering higher spectral efficiencies that would ultimately enhance the Quality-of-Service (QoS) to the end user. In this paper, we provide an insight into THz channel propagation characteristics, measurement capabilities, and modeling techniques for 6G communication applications, along with guidelines and recommendations that will aid future characterization efforts in the THz band. We survey the most recent and important measurement campaigns and modeling efforts found in literature, based on the use cases and system requirements identified. Finally, we discuss the challenges and limitations of measurement and modeling at such high frequencies and contemplate the future research outlook toward realizing the 6G vision.
This paper presents empirically based ultrawideband and directional channel measurements, performed in the Terahertz (THz) frequency range over 250 GHz bandwidth from 500 GHz to 750 GHz. Measurement setup calibration technique is presented for free-space measurements taken at Line-of-Sight (LoS) between the transmitter (Tx) and receiver (Rx) in an indoor environment. The atmospheric effects on signal propagation in terms of molecular absorption by oxygen and water molecules are calculated and normalized. Channel impulse responses (CIRs) are acquired for the LoS scenario for different antenna separation distances. From the CIRs the Power Delay Profile (PDP) is presented where multiple delay taps can be observed caused due to group delay products and reflections from the measurement bench.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.