Microscale processes of dust distribution in the city of Tbilisi with a very complex topography are modeled using a 3D regional model of atmospheric processes and numerical integration of the transport-diffusion equation of the impurity. The Terrain-following coordinate system is used to take into account the influence of a very complex relief on the process of atmospheric pollution. Modeling is carried out using horizontal grid steps of 300 m and 400 m along latitude and longitude, respectively. The cases of the stationary background eastern and western weak winds are considered. In the model, motor transport is considered as a nonstationary source of pollution from which dust is emitted into the atmosphere. Modelling of dust micro-scale diffusion process showed that the city air pollution depends on spatial distribution of the main sources of city pollution, i.e. on vehicle traffic intensity, as well as on spatial distribution of highways, and micro-orography of city and surrounding territories. It is shown that the dust pollution level in the surface layer of the atmosphere is minimal at 6 a.m. Ground-level concentration rapidly grows with increase of vehicle traffic intensity and by 12 a.m. reaches maximum allowable concentration (MAC = 0.5 mg/m3) in the vicinity of central city mains. From 12 a.m. to 9 p.m. maximum dust concentration values are within the limits of 0.9-1.2 MAC. In the mentioned time interval formation of the highly dusty zones, and slow growth of their areas and value of ground-level concentrations take place. These zones are located in both central and peripheral parts of the city. Their disposition and area sizes depend on spatial distribution of local wind generated under action of complex terrain, as well as on the processes of turbulent and advective dust transfer. From 9 to 12 p.m. reduction of dust pollution and ground-level concentration takes place. After the midnight city dust pollution process continues quasi-periodically. As result of the analysis of vertical distribution of dust concentration is obtained that a basic dust mass emitted into the atmosphere is located in the 100 m surface layer. Concentration value in the upper part of this layer reaches 0.8 MAC and rapidly decreases with altitude increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.