We present in this paper high resolution, two-dimensional LDV measurements in a turbulent pipe flow of water over the Reynolds number range 5000-25000. Results for the turbulence statistics up to the fourth moment are presented, as well as power spectra in the near-wall region. These results clearly show that the turbulence statistics scaled on inner variables are Reynolds-number dependent in the aforementioned range of Reynolds numbers. For example, the constants in the dimensionless logarithmic mean-velocity profile are shown to vary with Reynolds number. Our conclusion that turbulence statistics depend on the Reynolds number is consistent with results found in other flow configurations, e.g., a channel flow. Our results for the pipe flow, however, lead nevertheless to quite different tendencies.
† From experiments it is found that drag reduction only occurs if a certain wall shear stress, or Reynolds number is exceeded. This drag reduction onset Reynolds number is dependent on the type of fluid used (see e.g. Virk 1975).
In this work we mimic the efficient propulsion mechanism of natural cilia by magnetically actuating thin films in a cyclic but non-reciprocating manner. By simultaneously solving the elastodynamic, magnetostatic, and fluid mechanics equations, we show that the amount of fluid propelled is proportional to the area swept by the cilia. By using the intricate interplay between film magnetization and applied field we are able to generate a pronounced asymmetry and associated flow. We delineate the functional response of the system in terms of three dimensionless parameters that capture the relative contribution of elastic, inertial, viscous, and magnetic forces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.