Recently, one-dimensional periodic ternary photonic crystals have shown outstanding properties when compared to onedimensional periodic binary photonic crystals. In this work, a ternary photonic crystal is proposed as a temperature sensor. The structure of the ternary photonic structure is considered Si/polymer/SiO 2. The transmission spectra of the proposed ternary photonic structure are studied for different temperatures. It is observed that as the temperature increases, the transmission peak shifts toward higher wavelengths due to thermo-optic and thermal expansion coefficients of the polymer. It is found that the temperature-sensitive transmission peak shift is considerably enhanced due to the insertion of the polymer layer between Si and SiO 2 to constitute a ternary photonic crystal.
The present article investigates theoretically the refection and transmission through a lossless dielectric slab embedded between two semi−infinite left−handed materials (LHMs) in which the electric permittivity and magnetic permeability are simultaneously negative. The LHM is assumed to be dispersive according to Lorentz as well as Drude medium model. The reflection and transmission coefficients are studied with the angle of incidence, frequency and slab thickness. The effect of the damping frequency is also investigated. It is found that the damping frequency has an insignificant effect on reflected, transmitted and loss powers. Band pass filter is one of the possible applications of the proposed structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.