Pre-mitotic establishment of polarity is a key event in the preparation of mother cells for asymmetric cell divisions that produce daughters of distinct fates, and ensures correct cellular patterning of tissues and eventual organ function. Previous work has shown that two receptor-like kinases, PANGLOSS2 (PAN2) and PAN1, and the small GTPase RHO GTPASE OF PLANTS (ROP) promote mother cell polarity and subsequent division asymmetry in developing maize stomata. PAN proteins become polarized prior to asymmetric cell division, however, the mechanism of this polarization is unknown. Here we show that the SCAR/WAVE regulatory complex, which activates the actin-nucleating ARP2/3 complex, is the first known marker of polarity in this asymmetric division model and is required for PAN polarization. These findings implicate actin, and specifically branched actin networks, in PAN polarization and asymmetric cell division.
Mechanisms governing the polarization of plant cell division are poorly understood. Previously, we identified pangloss1 (PAN1) as a leucine-rich repeat-receptor-like kinase (LRR-RLK) that promotes the polarization of subsidiary mother cell (SMC) divisions toward the adjacent guard mother cell (GMC) during stomatal development in maize (Zea mays). Here, we identify pangloss2 (PAN2) as a second LRR-RLK promoting SMC polarization. Quantitative proteomic analysis identified a PAN2 candidate by its depletion from membranes of pan2 single and pan1;pan2 double mutants. Genetic mapping and sequencing of mutant alleles confirmed the identity of this protein as PAN2. Like PAN1, PAN2 has a catalytically inactive kinase domain and accumulates in SMCs at sites of GMC contact before nuclear polarization. The timing of polarized PAN1 and PAN2 localization is very similar, but PAN2 acts upstream because it is required for polarized accumulation of PAN1 but is independent of PAN1 for its own localization. We find no evidence that PAN2 recruits PAN1 to the GMC contact site via a direct or indirect physical interaction, but PAN2 interacts with itself. Together, these results place PAN2 at the top of a cascade of events promoting the polarization of SMC divisions, potentially functioning to perceive or amplify GMC-derived polarizing cues.
Pangloss1 (PAN1) and PAN2 are leucine-rich repeat receptor-like proteins that function cooperatively to polarize the divisions of subsidiary mother cells (SMCs) during stomatal development in maize (Zea mays). PANs colocalize in SMCs, and both PAN1 and PAN2 promote polarization of the actin cytoskeleton and nuclei in these cells. Here, we show that PAN1 and PAN2 have additional functions that are unequal or divergent. PAN1, but not PAN2, is localized to cell plates in all classes of dividing cells examined. pan1 mutants exhibited no defects in cell plate formation or in the recruitment or removal of a variety of cell plate components; thus, they did not demonstrate a function for PAN1 in cytokinesis. PAN2, in turn, plays a greater role than PAN1 in directing patterns of postmitotic cell expansion that determine the shapes of mature stomatal subsidiary cells and interstomatal cells. Localization studies indicate that PAN2 impacts subsidiary cell shape indirectly by stimulating localized cortical actin accumulation and polarized growth in interstomatal cells. Localization of PAN1, Rho of Plants2, and PIN1a suggests that PAN2-dependent cell shape changes do not involve any of these proteins, indicating that PAN2 function is linked to actin polymerization by a different mechanism in interstomatal cells compared with SMCs. Together, these results demonstrate that PAN1 and PAN2 are not dedicated to SMC polarization but instead play broader roles in plant development. We speculate that PANs may function in all contexts to regulate polarized membrane trafficking either directly or indirectly via their influence on actin polymerization.Leucine-rich repeat (LRR)-receptor-like kinases (RLKs) regulate many aspects of plant development and physiology. While few ligands have been definitively identified, the general view of the function of these proteins is that interaction of ligand(s) with the LRRcontaining extracellular domains regulates the activity of the intracellular kinase domains, triggering downstream cellular responses. While the kinase domains of many such receptor-like proteins appear to be catalytically inactive (an estimated approximately 20% of all Arabidopsis [Arabidopsis thaliana] RLKs, based on bioinformatics analyses; Castells and Casacuberta, 2007), many such "pseudokinases" nevertheless participate in signal transduction via interaction with active kinases (other LRR-RLKs or cytoplasmic kinases; Llompart et al., 2003;Boudeau et al., 2006;Rajakulendran and Sicheri, 2010).We previously identified a pair of LRR-RLKs in maize (Zea mays), Pangloss1 (PAN1) and PAN2, which function cooperatively to polarize the asymmetric divisions of subsidiary mother cells (SMCs) during stomatal development (Cartwright et al., 2009;Zhang et al., 2012).
The adenosinergic pathway represents an attractive new therapeutic approach in cancer immunotherapy. In this pathway, ecto-5-nucleotidase CD73 has the unique function of regulating production of immunosuppressive adenosine (ADO) through the hydrolysis of AMP. CD73 is overexpressed in many cancers, resulting in elevated levels of ADO that correspond to poor patient prognosis. Therefore, reducing the level of ADO via inhibition of CD73 is a potential strategy for treating cancers. Based on the binding mode of adenosine 5′-(α,β-methylene)diphosphate (AOPCP) with human CD73, we designed a series of novel monophosphonate small-molecule CD73 inhibitors. Among them, OP-5244 (35) proved to be a highly potent and orally bioavailable CD73 inhibitor. In preclinical studies, 35 completely inhibited ADO production in both human cancer cells and CD8+ T cells. Furthermore, 35 lowered the ratio of ADO/AMP significantly and reversed immunosuppression in mouse models, indicating its potential as an in vivo tool compound for further development.
The glucocorticoid receptor (GR) has been linked to therapy resistance across a wide range of cancer types. Preclinical data suggest that antagonists of this nuclear receptor may enhance the activity of anticancer therapy. The first-generation GR antagonist mifepristone is currently undergoing clinical evaluation in various oncology settings. Structure-based modification of mifepristone led to the discovery of ORIC-101 (28), a highly potent steroidal GR antagonist with reduced androgen receptor (AR) agonistic activity amenable for dosing in androgen receptor positive tumors and with improved CYP2C8 and CYP2C9 inhibition profile to minimize drug-drug interaction potential. Unlike mifepristone, 28 could be codosed with chemotherapeutic agents readily metabolized by CYP2C8 such as paclitaxel. Furthermore, 28 demonstrated in vivo antitumor activity by enhancing response to chemotherapy in the GR OVCAR5 ovarian cancer xenograft model. Clinical evaluation of safety and therapeutic potential of 28 is underway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.