The in vivo firing pattern of ventral tegmental area (VTA) dopamine neurons is controlled by GABA afferents originating primarily from the nucleus accumbens (NAc), rostromedial tegmental nucleus (RMTg), and local GABA neurons within the VTA. Although different forms of plasticity have been observed from GABA inputs to VTA dopamine neurons, one dependent on cyclic GMP synthesis and the other on adenylyl cyclase activation, it is unknown whether plasticity is differentially expressed in each. Using an optogenetic strategy, we show that identified inhibitory postsynaptic currents (IPSCs) from local VTA GABA neurons and NAc afferents exhibit a cyclic GMP-dependent long-term potentiation (LTP) that is capable of inhibiting the firing activity of dopamine neurons. However, this form of LTP was not induced from RMTg afferents. Only an adenylyl cyclase-mediated increase in IPSCs was exhibited by all three inputs. Thus discrete plasticity mechanisms recruit overlapping but different subsets of GABA inputs to VTA dopamine neurons. We describe a mapping of plasticity expression, mediated by different mechanisms, among three distinct GABA afferents to ventral tegmental area (VTA) dopamine neurons: the rostromedial tegmental nucleus, the nucleus accumbens, and the local GABA neurons within the VTA known to synapse on VTA dopamine neurons. This work is the first demonstration that discrete plasticity mechanisms recruit overlapping but different subsets of GABA inputs to VTA dopamine neurons.
The changes in firing probability produced by a synaptic input are usually visualized using the post-stimulus time histogram (PSTH). It would be useful if postsynaptic firing patterns could be predicted from patterns of afferent synaptic activation, but attempts to predict the PSTH from synaptic potential waveforms using reasoning based on voltage trajectory and spike threshold have not been successful, especially for inhibitory inputs. We measured PSTHs for substantia nigra pars reticulata (SNr) neurons inhibited by optogenetic stimulation of striato-nigral inputs, or by matching artificial inhibitory conductances applied by dynamic clamp. The PSTH was predicted by a model based on each SNr cell's phase resetting curve (PRC). Optogenetic activation of striato-nigral input or artificial synaptic inhibition produced a PSTH consisting of an initial depression of firing followed by oscillatory increases and decreases repeating at the SNr cell's baseline firing rate. The phase resetting model produced PSTHs closely resembling the cell data, including the primary pause in firing and the oscillation. Key features of the PSTH, including the onset rate and duration of the initial inhibitory phase, and the subsequent increase in firing probability could be explained from the characteristic shape of the SNr cell's PRC. The rate of damping of the late oscillation was explained by the influence of asynchronous phase perturbations producing firing rate jitter and wander. Our results demonstrate the utility of phase resetting models as a general method for predicting firing in spontaneously active neurons, and their value in interpretation of the striato-nigral PSTH.
This study differentiated baboon fibroblast-derived induced pluripotent stem cells into dopaminergic neurons with the application of specific morphogens and growth factors. The results show the utility of the baboon model for testing and optimizing the efficacy and safety of stem cell-based therapeutic approaches for the treatment of Parkinson's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.