Carbon capture and storage (CCS) for fossil fuel power plants is perceived as a critical technology for climate mitigation. Nevertheless, limited installed capacity to date raises concerns about CCS ability to scale sufficiently. Conversely, scalable renewable electricity installations-solar and wind-are already deployed at scale and have demonstrated a rapid expansion potential. Here we show that power sector CO 2 emission reductions accomplished by investing in renewable technologies generally provide a better energetic return than CCS. We estimate the electrical Energy-Return-on-Energy-Invested ratio of CCS projects accounting for their operational and infrastructural energy penalties to range between 6.6:1 and 21.3:1 for 90% capture ratio and 85% capacity factor. These values compare unfavorably to dispatchable scalable renewable electricity with storage, which ranges from 9:1 to 30+:1 under realistic configurations. Therefore, renewables plus storage provide a more energetically effective approach to climate mitigation than constructing CCS fossil power stations.
Planning the appropriate renewable energy (RE) installation rate should balance two partially contradictory objectives: substituting fossil fuels fast enough to stave-off the worst consequences of climate change while maintaining a sufficient net energy flow to support the world's economy. The upfront energy invested in constructing a RE infrastructure subtracts from the net energy available for societal energy needs, a fact typically neglected in energy projections. Modeling feasible energy transition pathways to provide different net energy levels we find that they are critically dependent on the fossil fuel emissions cap and phase-out profile and on the characteristic energy return on energy invested of the RE technologies. The easiest pathway requires installation of RE plants to accelerate from 0.12 TW p yr -1 in 2013 to peak between 7.3 and 11.6 TW p yr -1 in the late 2030s, for an early or a late fossil-fuel phase-out respectively in order for emissions to stay within the recommended CO 2 budget.
Climate change mitigation is one of the most critical challenges of this century. The unprecedented global effects of climate change are wide-ranging, including changing weather patterns that threaten food production, increased risk of catastrophic floods, and rising sea levels. Adapting to these impacts will be more difficult and costly in the future if radical changes are not made now. This review paper evaluates the Gulf Cooperation Council (GCC) countries’ potential for solar and wind energy resources to meet climate change mitigation requirements and assesses the ability of the GCC region to shift towards low-carbon technologies. The review demonstrates that the GCC region is characterized by abundant solar energy resources. The northwestern, southeastern, and western mountains of the region are highlighted as locations for solar energy application. Oman displays the highest onshore wind speed range, 3–6.3 m s⁻1, and has the highest annual solar radiation of up to 2500 kWh/m2. Kuwait has the second highest onshore wind speed range, 4.5–5.5 m s⁻1, particularly in the western mountains, while northwestern Saudi Arabia has a range of 3–6 m s⁻1. The United Arab Emirates (UAE) has the second highest annual solar radiation, 2285 kWh/m2, while Saudi Arabia and the state of Kuwait have equal annual solar radiation at 2200 kWh/m2. This review demonstrates that abundant offshore wind energy resources were observed along the coastal areas of the Arabian Gulf, as well as a potential opportunity for wind energy resource development in the Red Sea, which was characterized by high performance. In addition, the GCC countries will not be able to control and address the interrelated issues of climate change in the future if they do not eliminate fossil fuel consumption, adhere to the Paris Agreement, and implement plans to utilize their natural resources to meet these challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.