The influence of two structurally different anionic surfactants on the anhydrous-to-dihydrate transformation of carbamazepine (CBZ) was investigated. The surfactants studied were sodium lauryl sulfate (SLS), a surfactant commonly used in compendial dissolution methods, and sodium taurocholate (STC), an important surfactant in the solubilization and absorption of drugs and lipids in the gastrointestinal tract. Results show that both surfactants promoted the crystallization of CBZ dihydrate [CBZ(D)] during dissolution of the anhydrous monoclinic polymorph [CBZ(A)]). Examination of crystal surfaces showed that SLS facilitated the surface-mediated nucleation of CBZ(D) on CBZ(A) crystals at surfactant concentrations below the critical micelle concentration (cmc). Solubilization of a dye and related color changes provided visual evidence for adsorbed SLS assemblies on CBZ(A) crystal faces below the cmc. Above the cmc, both surfactants promoted the transformation by increasing the bulk nucleation of CBZ(D). STC changed the crystal morphology of CBZ(D) from acicular to prismatic, depending on STC concentration. Such morphology changes originate from interactions between STC and molecular structures of CBZ(D) crystal faces that interfere with the formation of a hydrogen-bonded chain of water molecules and carboxamide dimers.
Results of high-energy X-ray diffraction experiments coupled to atomic pair distribution function analysis of disordered low-Z materials are presented. Several scientifically and technologically important classes of disordered low-Z materials such as small and large organic molecules, graphitic powders, polymers and liquids are intentionally explored to certify the technique's performance. Results clearly show that disordered low-Z materials can be well characterized in terms of material's phase identity, relative abundance in mixtures and atomic-scale structure. The demonstrated efficiency of the technique provides the scientific community with much needed confidence to apply it more often than now.
LFA-1 (leukocyte function-associated antigen-1), is a member of the beta2-integrin family and is expressed on all leukocytes. This letter describes the discovery and preliminary SAR of spirocyclic hydantoin based LFA-1 antagonists that culminated in the identification of analog 8 as a clinical candidate. We also report the first example of the efficacy of a small molecule LFA-1 antagonist in combination with CTLA-4Ig in an animal model of transplant rejection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.