The recent advancements in interfacial evaporation of salty water using renewable solar energy provide one of the promising pathways to solve worldwide water scarcity. Pursuing a stable evaporation rate of water has been the central focus of this field, as it is directly related to the throughput, while salt deposition on the evaporator becomes a critical issue. Although Janus-structured evaporators with an upper hydrophobic layer and a bottom hydrophilic layer have been demonstrated as an effective way to suppress the salt precipitation, the hydrophobic upper layer, achieved usually by some special organic groups, suffers from a photochemical oxidation when exposed to oxidative chemicals in water and high-energy light, resulting in a deteriorated surface hydrophobicity. Here, we report our design of an efficient salt-rejecting Janus evaporator by taking advantage of the self-recovering surface hydrophobicity of poly(dimethylsiloxane) (PDMS) against photochemical damages, which ensures a long-term surface hydrophobicity. With its upper layer partially covered with PDMS, the Janus evaporator demonstrates an excellent salt rejection capability and exhibits a stable evaporation rate of 1.38 kg•m −2 •h −1 under 1 sun illumination for 400 min of continuous operation, or 90 d of intermittent work. By combining the advantages of high structural integration, long-term salt-rejection, and efficient evaporation, our Janus evaporator holds great promise for the stable production of clean water from seawater.
Photothermal actuators have attracted increasing attention due to their ability to convert light energy into mechanical deformation and locomotion. This work reports a freestanding, multidirectional photothermal robot that can walk along a predesigned pathway by modulating laser polarization and on–off switching. Magnetic–plasmonic hybrid Fe3O4/Ag nanorods are synthesized using an unconventional templating approach. The coupled magnetic and plasmonic anisotropy allows control of the rod orientation, plasmonic excitation, and photothermal conversion by simply applying a magnetic field. Once the rods are fixed with desirable orientations in a bimorph actuator by magnetic‐field‐assisted lithography, the bending of the actuator can be controlled by switching the laser polarization. A bipedal robot is created by coupling the rod orientation with the alternating actuation of its two legs. Irradiating the robot by a laser with alternating or fixed polarization synergistically results in basic movement (backward and forward) and turning (including left‐, right‐, and U‐turn), respectively. A complex walk along predesigned pathways can be potentially programmed by combining the movement and turning modes of the robots. This strategy provides an alternative driving mechanism for preparing functional soft robots, thus breaking through the limitations in the existing systems in terms of light sources and actuation manners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.