The rapid growth of the Internet of Vehicles applications leads to unreasonable resource allocation, task computing delay, and large energy consumption. To solve this problem, this paper proposes a computing resource allocation strategy based on mobile edge computing in the Internet of Vehicles environment. Firstly, we analyze the process of mobile edge computing network and resource allocation. Then, it is improved by introducing the Halton sequence into the traditional genetic algorithm, and the difference between populations is reduced by canceling the randomness to generate an initial population with smaller individual differences. Furthermore, by optimizing the parameter setting method of traditional genetic algorithm, the crossover probability and mutation probability that change dynamically with fitness value are given, which improves the accuracy of the algorithm. Finally, the simulation results show that under the premise of the same number of tasks, the average delay and total cost of the proposed strategy are also the smallest. When the number of tasks is 45, the average delay of the proposed method is 0.32 s and the total cost is 0.34, which are better than the comparison method. Simulation results show that the improved algorithm has more advantages in delay and overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.