Terahertz phase imaging can reveal the depth information of an optically opaque object and provide much better contrast for weak-absorption materials. We demonstrate a continuous-wave terahertz interferometric imaging method in which a far-infrared laser interferometer is used to measure the phase distribution with diffraction-limited lateral resolution and subwavelength axial resolution. An improved four-step phase-shifting algorithm is introduced to retrieve the phase map with very high accuracy and low distortion. The relative depth profiles of two transparent samples are successfully extracted by using this method. Experimental results verify that terahertz interferometric imaging in combination with the phase-shifting technique enables effective reconstruction of the phase image of the object under test.
The significant modifications to our recently constructed electron momentum spectrometer have been implemented. Compared with our previous report, the energy and the angle resolutions are significantly improved and reach ΔE = 0.45 eV, Δθ = ±0.53° and Δφ = ±0.84°, respectively. Moreover, the details of data reduction and the relation between azimuthal angle range and the sensitivity are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.