This paper presents a study on the quantification of the degree of damage from the microseismic event data, for assessment of excavation damaged zone of anisotropic rock in Jinchuan mine and presents numerical simulation and prediction on the deformation and failure of the rock masses surrounding laneway under rock mass properties and excavating conditions. Following an introduction to the engineering geology and mechanical properties of the rock mass in the Jinchuan mine areas, this paper reveals the features of the measured in situ stresses and puts emphasis on an analysis of the mechanism of underground opening and damage induced by the underground mining. Stress and AE redistribution induced by excavation of underground engineering results in the unloading zone in parts of surrounding rock masses. A micromechanics-based model has been proposed for brittle rock material undergoing irreversible changes of their microscopic structures due to microcrack growth. A systematical numerical modeling analysis method was completed. Based on numerical modelling, a series of predicting curves for rock mass response and deformation are obtained, which provides the basis of guiding the design and construction of anisotropic rock cave in Jinchuan mine. The use of the in situ stress field results in enhanced modeling of the stress concentrations and potential failures at the mines has also been reviewed. Knowledge of the prevailing rock stress field at the mines is a critical component for such modeling which has led to improved rock mechanics understanding and operations at Jinchuan mines.
The failure of rock mass under loading is resulting from preexisting flaws, such as cracks, pores and other defects. However, the propagation and coalescence mechanism among multi-group cracks is still a puzzle, especially to the engineering rocks in site. In this study, the failure of rock samples with two groups of preexisting parallel cracks under the axial load were numerically investigated by the Rock Failure Process Analysis code (RFPA) from a mechanics point of view. The simulated results reproduce the rock failure process: at the first loading stage, the particle is stressed and energy is stored as elastic strain energy with a few randomly isolated fractures. As the load increases, the isolated fractures are localized to form a macroscopic crack. At the peak load, the isolated fractures unstably propagate in a direction parallel to the loading direction following tortuous paths and with numerous crack branches. Finally, the major crack passes through the rock sample and several coarse progeny cracks are formed. Moreover, in the vicinity of the contacting zone the local crushing is always induced to cause fines. On the base of the simulated results, it is found that the dominant breakage mechanisms are catastrophic splitting and progressive crushing. It is pointed out that the particle breakage behavior strongly depends on the heterogeneous material property, the irregular shape and size, and the various loading conditions. Because of heterogeneity, the crack propagates in tortuous path and crack branching becomes a usual phenomenon. The failure process of rock sample demonstrated that due to the high stress concentration at the cracks tip or some weaker strength elements which are not on the cracks surface initiate some micro-fractures, those cracks and fractures may gradually become larger and larger, more and more with the progress of loading so that join into the branch cracks leading to the rock failure in the end. Not only did the output of the numerical simulation study compare well with the experiment results, but also the further insights of the mechanism of cracks propagation and coalescence process in rock mass were obtained.
In order to determine the concentration range of high-density slurry with coarse sands for suiting pipeline transportation in Jinchuan mine, at the same time find a suitable model to predict yield stress. In this paper, based on the coarse sand of Jinchuan mine as material to prepare high-density slurry, studied on the rheological properties. Through two-factor variance analysis, qualitative and ration analysis of the effect was conducted on the cement content and mass concentration to rheological parameters. The results show that the rheological model of the coarse sand is similar to that of Bingham plastic fluid, the mass concentration has a significant effect on viscosity and yield stress, and the viscosity is significantly affected by the cement content. The mass concentration of 82%-84% is suitable gravity transportation in pipeline. Meanwhile the relation model is established between yield stress and water-cement ratio, aggregate volume concentration, the model has high precision. These provide technical basis for designing filling system and ensuring the stability of slurry transportation, and a new idea for the research of rheological properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.